

Ecological site F123XY004TN Deep Loamy Terraces And Depressions

Last updated: 5/13/2025 Accessed: 05/21/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

MLRA notes

Major Land Resource Area (MLRA): 123X–Nashville Basin

123—Nashville Basin

This area is entirely in Tennessee (fig. 123-1). It makes up about 5,625 square miles (14,580 square kilometers). The cities of Nashville, Franklin, Hendersonville, Columbia, Murfreesboro, and Shelbyville are in this area.

Physiography

Most of this area is in the Nashville Basin Section of the Interior Low Plateaus Province of the Interior Plains. A small part of the northeast corner and the western and southern fourth of the area are in the Highland Rim Section of the same province and division. Most of the outer part of the Nashville Basin is deeply dissected and consists of steep slopes between narrow, rolling ridgetops and narrow valleys. The inner part of the basin is dominantly undulating and rolling. In many areas the land surface is deeply pitted by limestone sinks, and outcrops of limestone are almost everywhere. Elevation generally is about 650 feet (200 meters), but it is 1,000 to 1,325 feet (305 to 405 meters) on isolated hills and is as low as 450 feet (135 meters) in some of the more deeply cut stream channels.

Geology

The bedrock geology in this area consists of Ordovician limestone exposed by geologic erosion of the top of the Nashville Dome (a high part of the Cincinnati Arch) throughout this area. Sinkholes are common in the limestone and are either open to the subsurface or are covered by soils and colluvium that have collected in the depressions formed on the land surface above the sinkhole. Younger rocks occur as a rim just outside this area. Surficial deposits include loess on the less eroded landforms and alluvium along the rivers

and streams.

Source: United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land Resource Regions and Major Land Resource Areas of the United States, the

Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.

Classification relationships

South-Central Interior Large Floodplain (CES202.705)

South-Central Interior Small Stream and Riparian (CES 202.706)

Ecological site concept

This PES describes a mixed oak forest community on well-drained and moderately welldrained soils the Nashville Basin area of Tennessee. Multiple tree species may be dominant on these sites. ESD development will refine this PES group.

Associated sites

F123XY005TN	Floodplains
	Floodplains

Table 1. Dominant plant species

Tree	(1) Quercus (2) Liriodendron tulipifera
Shrub	(1) Asimina triloba (2) Frangula caroliniana
Herbaceous	(1) Parthenocissus quinquefolia (2) Podophyllum peltatum

Physiographic features

This ecosite is found on hills, basins, and plateaus in MLRA 123. NASIS lists the unique landforms for these mapunits stream terraces, flats, and hills.

Landforms	(1) Stream terrace(2) Flat(2) Little
	(3) Hill

Runoff class	Low to medium
Flooding duration	Very brief (4 to 48 hours) to brief (2 to 7 days)
Flooding frequency	None to occasional
Ponding frequency	None
Elevation	107–396 m
Slope	1–60%
Water table depth	41–107 cm
Aspect	Aspect is not a significant factor

Climatic features

Climate:

The average annual precipitation in this area is 48 to 57 inches (1,220 to 1,450 millimeters). The maximum precipitation occurs in midwinter and early in spring, and the minimum occurs in autumn. Rainfall primarily occurs during high-intensity, convective thunderstorms. Some snow occurs in winter, but it does not remain on the ground for long periods.

The average annual temperature is 56 to 60 degrees F (14 to 16 degrees C). The freezefree period averages 210 days and ranges from 195 to 230 days. The longer freeze-free periods occur in the southern part of the area.

Source: United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296.

Frost-free period (characteristic range)165-173 daysFreeze-free period (characteristic range)188-202 daysPrecipitation total (characteristic range)1,321-1,422 mmFrost-free period (actual range)162-174 daysFreeze-free period (actual range)181-208 daysPrecipitation total (actual range)1,245-1,422 mmFrost-free period (average)169 daysFreeze-free period (average)195 daysPrecipitation total (average)1,372 mm		
Precipitation total (characteristic range)1,321-1,422 mmFrost-free period (actual range)162-174 daysFreeze-free period (actual range)181-208 daysPrecipitation total (actual range)1,245-1,422 mmFrost-free period (average)169 daysFreeze-free period (average)195 days	Frost-free period (characteristic range)	165-173 days
Frost-free period (actual range)162-174 daysFreeze-free period (actual range)181-208 daysPrecipitation total (actual range)1,245-1,422 mmFrost-free period (average)169 daysFreeze-free period (average)195 days	Freeze-free period (characteristic range)	188-202 days
Freeze-free period (actual range)181-208 daysPrecipitation total (actual range)1,245-1,422 mmFrost-free period (average)169 daysFreeze-free period (average)195 days	Precipitation total (characteristic range)	1,321-1,422 mm
Precipitation total (actual range)1,245-1,422 mmFrost-free period (average)169 daysFreeze-free period (average)195 days	Frost-free period (actual range)	162-174 days
Frost-free period (average)169 daysFreeze-free period (average)195 days	Freeze-free period (actual range)	181-208 days
Freeze-free period (average) 195 days	Precipitation total (actual range)	1,245-1,422 mm
	Frost-free period (average)	169 days
Precipitation total (average) 1,372 mm	Freeze-free period (average)	195 days
	Precipitation total (average)	1,372 mm

Table 3. Representative climatic features

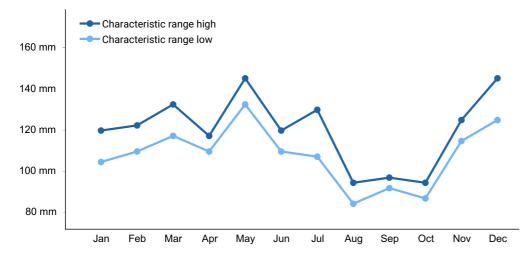


Figure 1. Monthly precipitation range

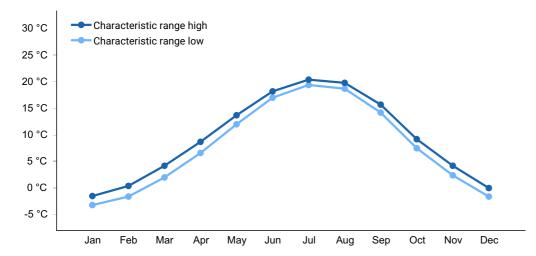


Figure 2. Monthly minimum temperature range

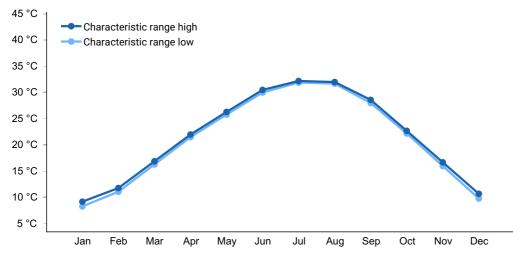


Figure 3. Monthly maximum temperature range

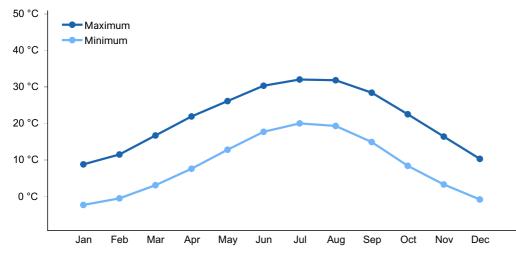


Figure 4. Monthly average minimum and maximum temperature

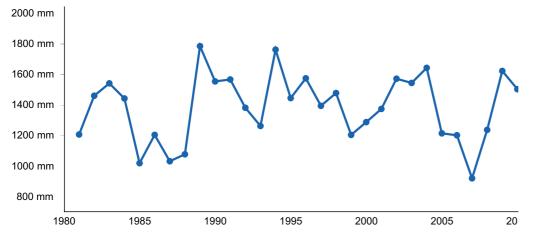


Figure 5. Annual precipitation pattern

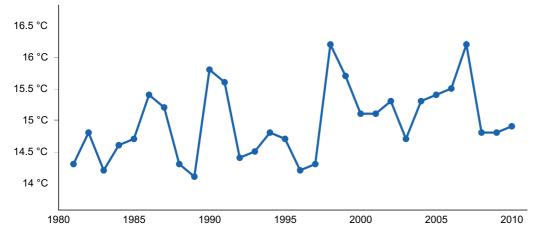


Figure 6. Annual average temperature pattern

Climate stations used

- (1) GAINESBORO [USC00403370], Gainesboro, TN
- (2) COLUMBIA 3 WNW [USC00401957], Columbia, TN
- (3) FAYETTEVILLE WTP [USC00403074], Fayetteville, TN
- (4) NASHVILLE INTL AP [USW00013897], Nashville, TN

Influencing water features

Some mapunits in this group may undergo occasional flooding.

Soil features

Soils in this group are shallow to deep, moderately well drained to well drained, and slow to moderately rapid permeable soils.

Soils in this group have different depths and drainage. Multiple ESDs will likely be developed from this initial PES group.

Parent material	 (1) Colluvium–limestone (2) Alluvium–limestone and shale (3) Loess–limestone, sandstone, and shale
Surface texture	(1) Gravelly silt loam (2) Silty clay loam
Family particle size	(1) Loamy
Drainage class	Moderately well drained to well drained
Permeability class	Slow to moderately rapid
Soil depth	51–165 cm
Surface fragment cover <=3"	0%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	10.16–20.32 cm
Calcium carbonate equivalent (0-101.6cm)	0%
Electrical conductivity (0-101.6cm)	0 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	56
Subsurface fragment volume <=3" (Depth not specified)	0–45%
Subsurface fragment volume >3" (Depth not specified)	0–40%

Table 4. Representative soil features

Ecological dynamics

Provisional Ecological Site (PES): F123XY004TN - Deep Loamy Terraces and Depressions Major Land Resource Area (MLRA) 123

This PES describes ecological communities likely to be found on soil in the PES soil grouping. Future field work is required to develop detailed and accurate ecological site descriptions (ESDs) that can be used by conservation planners for restoration and planning activities. This PES describes hypotheses based on available data from many different sources and scales and has not been developed using site specific ecological field monitoring. Future ESD development will result in this initial PES group being split into more refined ecological communities.

The main soil series currently included in this PES group are Armour, Byler, Dellrose, Harpeth, Hicks, Hillwood, Lomond, Nesbitt, and Sykes.

Forest Vegetation as listed in Official Series Descriptions (OSDs):

Armour: The native vegetation was mixed hardwoods including oaks, hickory, elm, hackberry, maple, beech, black walnut, ash, locust, yellow-poplar, and red cedar.

Byler: Most of the soil has been cleared and is used for growing pasture, hay, soybeans, small grain, grain sorghum, and silage crops. A small acreage is in forest dominantly hickory, oak, hackberry, red cedar, and elm.

Dellrose: The native vegetation is hardwoods, chiefly beech, hickory, oaks, yellow poplar, hackberry, black walnut, and locust.

Harpeth: Nearly all areas are cleared and used for growing row crops, pasture and hay. Crops commonly grown are corn, soybeans, tobacco, small grains and alfalfa. The native vegetation was mixed hardwoods such as oaks, hickories, beech, sweetgum and popular.

Hicks: Most of the soil is cleared and used for growing hay, pasture, small grains, tobacco, corn and vegetables. The native vegetation was mixed hardwoods.

Hillwood: Most areas of this soil have been cleared and are used as pasture. Forested areas are chiefly oak, hickory, elm, hackberry, and red cedar.

Lomond: These soils are used to grow hay, pasture, small grains, corn, tobacco, cotton, and soybeans. A small amount is in forest consisting of mixed hardwoods.

Nesbitt: Hay, pasture, corn, small grain, and tobacco. Native vegetation was mixed hardwoods.

Sykes: Most areas of this soil are used for corn, tobacco, small grain, hay and pasture. The native vegetation was mixed hardwoods including oak, hickory, elm, hackberry, locust, yellow poplar and black walnut.

Trees-on-site as listed in the USDA-NRCS Tennessee County Soil Surveys for MLRA 123 on these soils include: southern red oak, northern red oak, white oak, tulip poplar, hickories, black walnut, eastern red cedar, loblolly pine, and shortleaf pine. The most common tree species were southern red oak, northern red oak, white oak, and tulip poplar.

Trees-on-site as listed in the USDA NRCS NASIS database for PES soil mapunits include: southern red oak, northern red oak, white oak, sweetgum, "hybrid hickory", shagbark hickory, black walnut, black cherry, tulip poplar, loblolly pine, shortleaf pine, eastern red cedar, cherrybark oak, American elm, and American sycamore.

Ecological Dynamics

This PES describes a mixed oak forest community on well-drained and moderately welldrained soils the Nashville Basin area of Tennessee. Multiple tree species may be dominant on these sites with variations due to aspect, drainage, seed sources, present management, disturbance history, fire regime, topography, occasional flooding and the presence or absence of a fragipan layer.

Future field work is required to develop full ecological site descriptions (ESDs), a fieldbased state and transition model, and accurate plant community phases to support conservation or restoration planning.

State 1. (Reference) State 1, Phase 1.1: Plant species dominants: Oaks (Quercus spp.) – tulip poplar (*Liriodendron tulipifera*) / paw paw (*Asimina triloba*) – Carolina buckthorn (*Frangula caroliniana*) / Virginia creeper (*Parthenocissus quinquefolia*) - mayapple (*Podophyllum peltatum*)

Oaks on these sites may include white oak (*Q. alba*), southern red oak (*Q. falcata*), Shumard oak (*Q. shumardii*), and northern red oak (*Q. rubra*). Other hardwoods include tulip poplar (*Liriodendron tulipifera*), maples (Acer spp.), ashes (Fraxinus spp.), hickories (Carya spp.), American elm (*Ulmus americana*), black walnut (*Juglans nigra*), black cherry (Prunus serotine), sweetgum (*Liquidambar styraciflua*) and hackberry (*Celtis occidentalis*).

A robust and diverse herbaceous layer consisting of a variety of herbs, forbs and vines is found on these sites.

State 2. Pastureland State 2, Phase 2.1: Managed Pasture. Plant species dominants: *Schedonorus arundinaceus* (tall fescue) Plant species within pasture phases depend on seeding, management, and concurrent land uses. As with all sites, soil characteristics and management inputs will influence production levels.

Many species of warm-season or cool-season grasses are feasible for these sites. Common forage species include tall fescue, orchard grass, Johnson grass, and timothy.

Management of pasture sites should follow conservation planning standards and protocols which will benefit water quality, forage production, and soil health.

Transitioning this state to a reference condition would likely require extensive and longterm timber stand improvement practices including control of non-native vegetation and management for desired native tree, shrub and understory species.

State 3. Transitional Field

State 3, Phase 3.1: Plant species dominants: tulip poplar (*Liriodendron tulipifera*) -Eastern red cedar (*Juniperus virginiana*) / tall ironweed (*Vernonia gigantea*n)- tall fescue (*Schedonorus arundinaceus*)

Tree species would be dependent upon several factors including severity and duration of disturbance, adjacent plant communities, available seed sources, post-disturbance management (control of invasive plants, grazing, etc.). A wide range of hardwoods is possible and may include tulip poplar, maples, ashes, locusts, black cherry, blackhaw, eastern red cedar, pines, and if seed sources are nearby, oaks and hickories. Common shrubs would be berries, roses, and sumac.

Transitioning this state to a reference condition will require timber stand improvement practices to control non-native vegetation and manage for higher quality oak or hickory species.

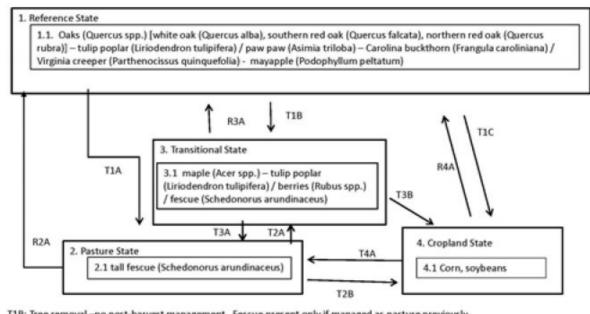
State 4. Croplands

Dependent upon seeding and management. Corn and soybeans are common.

Abandonment of cropland would result in weed species taking over the site. Dozens of species are possible depending on the seed sources. Initially annual weeds would predominate followed annual and perennial grasses, shrubs, and finally, pioneer tree species such as pines, eastern red cedar, locusts, maples, ashes, and tulip poplar. Restoration would be required to return this State to a reference community, including oak and hickory regeneration, control of non-native vegetation, and planting of native understory species. Protection from disturbance (grazing) would also be required.

Quercus michauxii - *Quercus shumardii* - *Liquidambar styraciflua / Arundinaria gigantea* Swamp Forest

Translated Name: Swamp Chestnut Oak - Shumard Oak - Sweetgum / Giant Cane Swamp Forest


Common Name: Swamp Chestnut Oak - Sweetgum Mesic Floodplain Forest Unique Identifier: CEGL002099

Classification Approach: International Vegetation Classification (IVC)

Summary: This swamp chestnut oak - hardwood forest is a bottomland community found in the central and south-central United States along borders and first bottoms of rivers, streams, and swamps, particularly along the Mississippi River, Ohio River, Tennessee River and their tributaries. Soils which support this association are deep, moist, rich, loamy, typically somewhat acidic to circumneutral, and well-drained. Short periods of inundation in the fall and winter can occur. Canopy diversity can be high in this community. Stands are typically dominated by Quercus michauxii, Quercus shumardii, Liquidambar styraciflua, and Carya laciniosa. Other hickories which can be present include Carya ovata and Carya alba. Canopy closure is at or near 100%. The subcanopy is dense and dominated by Carpinus caroliniana and Ulmus alata. Dominant shrubs include llex decidua, Cornus foemina, and Viburnum dentatum. The herbaceous layer is dense and dominated by Carex spp. and a diverse and varied assemblage of grasses and forbs, including Arundinaria gigantea which often forms dense, almost impenetrable stands particularly where canopy openings allow sunlight to reach the forest floor. Vines are prevalent in the subcanopy and understory of this community; the most commonly encountered are Toxicodendron radicans, Campsis radicans, and Parthenocissus quinquefolia.

State and transition model

PES F123XY004TN - Deep Loamy Terraces and Depressions

T1B: Tree removal -- no post-harvest management. Fescue present only if managed as pasture previously.

T1A, T3A, T4A: Pasture establishment. Inputs may include brush/tree removal, weed control, seeding, etc.

T3B, T1C, T2B: Cropland establishment. Inputs may include brush removal, weed control, seeding, etc.

T2A: Natural transition in absence of management inputs.

R2A, R3A, R4A: Extensive and long-term forest management inputs required to successfully restore reference community.

Figure 7. DeepLoamyTerraces&Depressions

Inventory data references

Site Development and Testing Plan

Future work is needed, as described in a future project plan, to validate the information presented in this provisional ecological site description. Future work includes field sampling, data collection and analysis by qualified vegetation ecologists and soil scientists. As warranted, annual reviews of the project plan can be conducted by the Ecological Site Technical Team. A final field review, peer review, quality control, and quality assurance reviews of the ESD are necessary to approve a final document.

Other references

Abrams, M.D. 1992. Fire and the development of oak forests. BioScience, 42: 346–353.

Abrams, M.D. and G.J.Nowacki. 2008. Native Americans as active and passive promoters of mast and fruit trees in the eastern USA. The Holocene 18.7. pp. 1123-1137.

Alexander, H.D. and M.A. Arthur, D.L. Loftis, and S.R. Green. 2008. Survival and growth

of upland oak and co-occurring competitor seedlings following single and repeated prescribed fires. Forest Ecology and Management 256: 1021–1030.

Anderson, Michelle D. 2003. *Juniperus virginiana*. In: Fire Effects Information System, U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, and Fire Sciences Laboratory.

Anderson, R.C. & Brown, L.E. 1983. Comparative effects of fire on trees in a Midwestern savannah and an adjacent forest. Bulletin of the Torrey Botanical Club, 110: 87–90.

Baskin, J.M., C.C. Baskin, and E.W. Chester. 1994. The Big Barrens of Kentucky and Tennessee: Further observations and considerations. Castanea 59:226-254.

Black, B.A., Abrams, M.D. 2001. Influence of Native Americans and surveyor biases on metes and bounds witness tree distribution. Ecology. 82:2574-2586.

Braun, E.L. 1950. Deciduous forests of Eastern North America. Blakinston Co., Pennsylvania. Reprinted in 2001 by Blackburn Press, Caldwell, New Jersey.

Carmean. W.H. 1970. Site quality for eastern hardwoods. The silviculture of oaks and associated species. USDA Forest Service Research paper, Northeast. Forest Exp. Sta., Upper Darby, PA, NE-144: 36-56.

Carmean, W.H. 1971. Soil-site relationships of the upland oaks. Oak Symp. Proc. USDA Forest Service Research Paper. Northeast. Forest Exp. Sta., Upper Darby, PA. p. 23-29.

Carmean, Willard H.; Hahn, Jerold T.; Jacobs, Rodney D. 1989. Site index curves for forest species in the eastern United States. Gen. Tech. Rep. NC-128. St. Paul, MN: U.S. Department of Agriculture, Forest Service, North Central Forest Experiment Station.

Comer, P., D. Faber-Langendoen, R. Evans, S. Gawler, C. Josse, G. Kittel, S. Menard, M. Pyne,

M. Reid, K. Schulz, K. Snow, and J. Teague. 2003. Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. NatureServe, Arlington, Virginia.

Curtis, J. T., 1959. Ecological Systems of the United States: A Working Classification of U.S. Terrestrial Systems. NatureServe, Virginia. .

Denevan, W.M. 1992. The pristine myth: the landscape of the Americas in 1492. Annals of the Association of American Geographers, 82 (3), 369–385.

DeSelm, H. R. 1994. Tennessee barrens. Castanea 59(3):214-225.

Faber-Langendoen, D., editor. 2001. Plant communities of the Midwest: Classification in an ecological context. Association for Biodiversity Information, Arlington, VA. 61 pp. + appendix (705 pp.).

Fenneman, N.M. 1917. Physiographic subdivisions of the United States. Proceedings of the National Academy of Sciences of the United States of America. Vol. 3(1). pp. 17 -22.

Gleason, H.A. and A. Cronquist. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. 2nd edition. The New York Botanical Garden, Bronx.

Griffith, G. E., J. M. Omernik, and S. H. Azevedo. 1998. Ecoregions of Tennessee. (Twosided color poster with map, descriptive text, summary tables, and photographs). U.S. Geological Survey, Reston, VA. Scale 1:940,000.

Kartesz, J.T., The Biota of North America Program (BONAP). 2011. North American Plant Atlas (http://www.bonap.org/MapSwitchboard.html). Chapel Hill, N.C. [maps generated from Kartesz,

J.T. 2010. Floristic Synthesis of North America, Version 1.0. Biota of North America Program (BONAP). (in press)].

Keever, C. 1978. A study of the mixed mesophytic, western mesophytic, and oak chestnut regions of the eastern deciduous forest including a review of the vegetation and sites recommended as potential natural landmarks. Millersville State College, Pennsylvania.

Kuchler, A.W. 1964. Potential natural vegetation of the conterminous United States. Spec. Publ. 36 New York, NY: American Geographical society.

Land Resource Regions and Major Land Resource Areas of the United States. United States Department of Agriculture Soil Conservation Service Handbook 296. Dec. 1981. 87-88.

Landfire [Landfire National Vegetation Dynamics Database]. 2007a. Landfire National Vegetation Dynamics Models. Landfire Project, USDA Forest Service, U.S. Department of Interior. (January - last update)

Lawless, P. J., Baskin, J. M. and C. C. Baskin. 2006. Xeric Limestone Prairies of Eastern United States: Review and Synthesis. The Botanical Review 73(4): 303–325. The New York Botanical Garden.

Lunt, I.D. & Spooner, P.G. 2005. Using historical ecology to understand patterns of biodiversity in fragmented agricultural landscapes. Journal of Biogeography, 32:1859–1873.

McNab, W.H. and P.E. Avers. 1994. Ecological subregions of the United States. U.S.

Forest Service. Prepared in cooperation with Regional Compilers and the ECOMAP Team of the Forest Service.

Miller, J.H., Chambliss, E.B. and Loewenstein, N.J. 2010. A field guide for the Identification of Invasive Plants in Southern Forests. US Forest Service Southern Research Station, General Technical Report SRS-119.

Parker, G.R. 1989. Old-growth forests of the Central Hardwood Region. Nat. Areas J. 9(1): 5-11.

Quarterman, E. and R.L. Powell. 1978. Potential ecological/geological natural landmarks on the Interior Low Plateaus. pp. 7-73. U.S. Department of the Interior, Washington, D.C. Quarterman,

Stritch, L.R. 1990. Landscape-scale restoration of barrens-woodland within the oakhickory forest mosaic. Restoration & Management Notes 8: 73-77.

Somers, P., L. R. Smith, P. B. Hamel, and E. L. Bridges. 1986. Preliminary analyses of plant communities and seasonal changes in cedar glades of middle Tennessee. ASB Bulletin 33:178-192.

U.S. Department of Agriculture (USDA), Natural Resources Conservation Service. Soil surveys of Tennessee counties in MLRA 123.

U.S. Department of Agriculture-Forest Service, Agriculture Handbook 654, Silvics of North America.

Zollner, D., M.H. MacRoberts, B.R. MacRoberts, & D. Ladd. 2005. Endemic vascular plants of the Interior Highlands, U.S.A. Sida 21:1781-1791.

Websites:

Cleland, D. T., J. A. Freeouf, J. E. Keys, Jr., G. J. Nowacki, C. A. Carpenter, and W. H. McNab. 2007. Ecological Subregions: Sections and Subsections of the Conterminous United States. GTR-WO-76C-1. http://fsgeodata.fs.fed.us/other_resources/ecosubregions.html

Ecosystem classification of the United States; Ecological Subregions of the United States.1994. Compiled by W. Henry McNab, Peter E. Avers, et al. Forest Service, U.S. Department of Agriculture [USDA], Washington, DC., USA: http://www.fs.fed.us/land/pubs/ecoregions

Environmental Mapping and Assessment Program (EMAP). 2004. Washington, DC., USA:

http://www.epa.gov/docs/emap/

Geospatial Data Gateways: https://gdg.sc.egov.usda.gov/

Landfire: http://www.landfire.gov

NatureServe. NatureServe Explorer: An online encyclopedia of life [web application]. Version 7.1. NatureServe, Arlington, Virginia. http://www.natureserve.org/explorer

Nashville Basin Limestone Glade and Woodland, Ecological System Comprehensive Report

http://http://explorer.natureserve.org/servlet/NatureServe? searchSystemUid=ELEMENT_GLOBAL.2.723170

Official Soil Series Descriptions, USDA-NRCS: https://soilseries.sc.egov.usda.gov/osdname.asp

Silvics of North America, US Forest Service. http://www.na.fs.fed.us/spfo/pubs/silvics_manual/table_of_contents.htm

USDA Plants: http://plants.usda.gov/java/

U.S. Geological Survey (USGS), Center for Biological Informatics (CBI) 2004. U.S. Department of the Interior: http://biology.usgs.gov/cbi

Vascular Plant Image Library: http://botany.csdl.tamu.edu/FLORA/imaxxara.htm

Vegetation Mapping Program, National Vegetation Classification Standard. 2004. Vegetation Classification Standard, Vegetation Subcommittee, U.S. Geological Survey [USGS; U.S. Department of the Interior], Reston, Virginia, USA. http://www.fgdc.gov/standards/projects/FGDC-standards-projects/vegetation

Vegbank: www.vegbank.org

Web Soil Survey, USDA-NRCS: http://websoilsurvey.nrcs.usda.gov/app/

Woodland Wildflowers of Illinois: http://www.illinoiswildflowers.info/woodland/woodland_index.htm

U.S. Department of Agriculture, Forest Service. 1994. Ecosystem classification of the United States; Ecological Subregions of the United States. Compiled by W. Henry McNab, Peter E. Avers, et al., Washington, DC. http://www.fs.fed.us/land/pubs/ecoregions

U.S. Department of the Interior. 2004. Vegetation Mapping Program, National Vegetation

Classification Standard. http://biology.usgs.gov/npsveg

U.S. Geological Survey (USGS), Center for Biological Informatics (CBI) 2004. U.S. Department of the Interior. http://biology.usgs.gov/cbi

Approval

Matthew Duvall, 5/13/2025

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	05/21/2025
Approved by	Matthew Duvall
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):

- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability: