

Ecological site R078BY701TX Shallow Sandstone 19-26" PZ

Last updated: 9/15/2023 Accessed: 05/21/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

MLRA notes

Major Land Resource Area (MLRA): 078B–Central Rolling Red Plains, Western Part

MLRA 78B is characterized by strongly dissected, rolling plains with prominent ridges and valleys and rolling to steep irregular topography. Loamy soils are generally well drained,

range from shallow to deep, and developed in sediments of Triassic and Permian age.

LRU notes

NA

Classification relationships

This ecological site is correlated to soil components at the Major Land Resource Area (MLRA) level which is further described in USDA Ag Handbook 296.

Ecological site concept

These sites occur on shallow soils on uplands. Reference vegetation includes midgrasses and shortgrasses with forbs and scattered woody plants. Abusive grazing practices can lead to a shift in the plant community. Without fire or alternative brush management, woody species may increase on the site.

Associated sites

R078BY076TX	Gyp 19-26" PZ Shallow soils over gypsum
R078BY084TX	Rough Breaks 19-26" PZ Shallow soils on breaks
R078BY090TX	Shallow Clay 19-26" PZ Shallow clay soils on uplands
R078BY092TX	Very Shallow Clay 19-26" PZ Very shallow soils on uplands

Table 1. Dominant plant species

Tree	(1) Juniperus pinchotii
Shrub	Not specified
Herbaceous	(1) Schizachyrium scoparium (2) Bouteloua curtipendula

Physiographic features

This is an upland site with very shallow soils mixed with outcrops of Permian and Triassic sandstone. It occurs on ridges, low hills, side slopes along drainageways and along escarpments. Slopes are moderate to moderately steep. There are often sandstone fragments mixed with shale and siltstone on the soil surface and often sandstone bedrock will be showing. The site may be small to relatively large, varying from 50 to over 1000

acres in size. The actual soils are so intermingled with rock outcrops that they cannot be separated.

This site may be encountered at any aspect of the landscape.

Landforms	 (1) Plains > Ridge (2) Plains > Escarpment (3) Plains > Hill
Runoff class	Low to medium
Flooding frequency	None
Ponding frequency	None
Elevation	411–975 m
Slope	1–20%
Water table depth	152–203 cm
Aspect	Aspect is not a significant factor

Table 2. Representative physiographic features

Climatic features

The climate of the western rolling plains is dry, sub-humid with hot summers and mild winters. Temperatures often reach 100 degrees F for several consecutive days during summer. Cold spells with temperatures less than 20 degrees F only last short periods of time. The soil is not frozen below the 3-inch depth for more than 2 to 3 days. Humidity is low during the winter and early spring months. Sometimes relative humidity is high enough to make summer days seem uncomfortable. Most of the precipitation comes in the form of rain and that in the spring and early summer principally. May is the wettest month followed by June. July and August are dryer and much hotter. Rainfall often comes as intense showers of relatively short duration. Rainfall rate per hour is often high and runoff is significant. Infiltration is diminished due to lack of opportunity time. The growing season begins in April and ends with the first killing frost in November. There is little snowfall with the average being about 10 inches. Rainfall averages about 22 inches.

There is a 70% chance that yearly precipitation will fall between 16 and 24 inches. About 55% of the time, the yearly rainfall is below the mean. Dry spells during the growing season are common and long-term droughts occur in cycles of about 20 years. Native vegetation is principally warm season.

 Table 3. Representative climatic features

Frost-free period (characteristic range)	189-199 days
Freeze-free period (characteristic range)	202-222 days

Precipitation total (characteristic range)	584 mm
Frost-free period (actual range)	184-203 days
Freeze-free period (actual range)	201-223 days
Precipitation total (actual range)	559-584 mm
Frost-free period (average)	193 days
Freeze-free period (average)	213 days
Precipitation total (average)	584 mm

Climate stations used

- (1) WELLINGTON [USC00419565], Wellington, TX
- (2) MATADOR [USC00415658], Matador, TX
- (3) SPUR [USC00418566], Spur, TX
- (4) SNYDER [USC00418433], Snyder, TX
- (5) ROBERT LEE [USC00417669], Robert Lee, TX

Influencing water features

Rapid runoff due to impermeable soil material and steep slopes.

There are no streams or wetlands associated with this ecological site.

Wetland description

NA

Soil features

Soils are very shallow, well drained and calcareous with limited soil development. Rock outcrops are intermingled with soil material. Geologic erosion has stripped away soil material exposing bedrock in many places. Layers of sandstone may be quite thick and are interlaid with sandy to clayey redbeds. The soil is generally loam to fine sandy loam in texture with stony or gravelly modifier. Underlying material is pale brown strongly cemented sandstone. Available water holding capacity is low and fertility is low. Plant growth and production is limited due to shallow depth. Cracks in underlying bedrock can allow water to penetrate. Shrubs and grasses with deep root systems may be able to access some of this moisture.

Major Soil Taxonomic Units correlated to this site include: Latom soils and Latom Rock Outcrop.

Table 4. Representative soil features

(1) Residuum–sandstone
(1) Fine sandy loam (2) Gravelly fine sandy loam
Well drained
Moderately slow to moderate
10–51 cm
10–51 cm
5–40%
1–5%
1.02–3.05 cm
0–10%
0–2 mmhos/cm
0
7.9–8.4
3–22%
1–3%

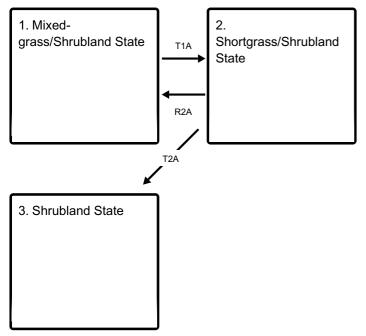
Ecological dynamics

This reference plant community is dominated by tall and midgrasses with a good perennial forb population and a variety of short shrubs. Some juniper occurs on the site along with occasional mesquite. The site occurs in rougher terrain and is found along escarpments and drainageways within the rolling red plains. The parent material is sandstone and rock outcrops are mixed with soil material. Production potential is limited due to shallow depth of soil and by steep terrain.

Slopes vary from moderate to steep but usually fall into the 5 to 20 % slope range. Runoff is rapid and infiltration limited. Evaporation is high. Plant basal cover is generally sparse but varies. Cracks and fissures in the underlying sandstone trap water in some locations and plants can sometimes access this water. Lack of inherent fertility may affect palatability of plants. This site is not as prone to over utilization as some sites with deeper, more fertile soils. Because of it's diversity of plant species, the site is utilized by a variety

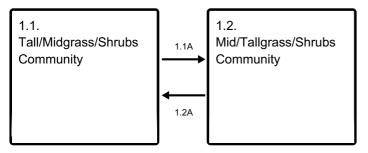
of wildlife. There are several desirable forb and shrub species that afford good quality browse.

Natural fire shaped the ecology of this site as with most plains grassland sites. Grasses such as little bluestem (*Schizachyrium scoparium*), sand bluestem (*Andropogon hallii*), and sideoats grama (*Bouteloua curtipendula*) are stimulated by periodic fire. Redberry juniper (*Juniperus pinchotii*) is suppressed but usually resprouts and attains pre-burn status within a few years. But in general, shrubs are suppressed sufficiently to allow for a grassland aspect to exist. Cacti species (Opuntia spp) are damaged by fire provided sufficient fuel exists to insure an intense burn. Wildfires are thought to have occurred perhaps every 8 to 15 years in the region depending on fuel accumulation and random lightning strikes. Native Americans sometimes purposely set fires to influence grazing by large herbivores. Due to relatively thin vegetative cover, limited fuel loads and protective terrain, some susceptible shrub species have been naturally protected from wildfire damage on some portions of the site. If not naturally burned, juniper will increase on the site and can form a significant canopy cover in some areas. Overgrazing by livestock will reduce the more palatable grass and forb species. Cattle will generally not spend as much time on this site but will selectively graze when there.


The main influences that drive the ecology of the site are: climatic variability, occurrence of / or lack of fire, shallow soils, and selective grazing or browsing by livestock and wildlife. Geologic erosion can have an effect on portions of the site. The site can deteriorate through mismanagement and is sensitive to abuse.

Plant Communities and Transitional Pathways (diagram):

The following diagram suggests some pathways that the vegetation on this site might take. There may be other states not shown on the diagram. This information is intended to show what might happen in a given set of circumstances; it does not mean that this would happen the same way in every instance. Local professional guidance should always be sought before pursuing a treatment scenario.


State and transition model

Ecosystem states

- **T1A** Absence of disturbance and natural regeneration over time, may be coupled with excessive grazing pressure
- **R2A** Adequate rest from defoliation and removal of woody canopy, followed by reintroduction of historic disturbance regimes
- **T2A** Absence of disturbance and natural regeneration over time, may be coupled with excessive grazing pressure

State 1 submodel, plant communities

State 2 submodel, plant communities

2.1. Short/Midgrass/Shrubs Community

State 3 submodel, plant communities

3.1. Shrubs/Shortgrass Community

State 1 Mixed-grass/Shrubland State

The interpretive or "reference" plant community for the Tall/Midgrass/Shrubs Community (1.1) is a balanced mixture of tallgrasses such as little bluestem and sand bluestem; midgrasses such as sideoats grama and a few shortgrasses such as blue grama, buffalograss, and hairy grama. There is also a variety of perennial forbs including dotted gayfeather, plains blackfoot daisy, heath aster, western ragweed, gaura, and catclaw sensitivebriar. There are also scattered short woody shrubs in this community including feather dalea, skunkbush sumac, and vine ephedra. A few scattered redberry juniper, mesquite, and hackberry trees also occur. The Mid/Tallgrass/Shrubs Community (1.2) occurs when tallgrasses such as little bluestem and sand bluestem decrease and midgrasses such as sideoats grama, sand dropseed, and silver bluestem dominate. There is an increase in perennial three-awns. Some low growing shrubs such as feather dalea, pricklypear, elbowbush, and yucca also occur. Redberry juniper increases to ten to fifteen percent woody canopy.

Dominant plant species

- Pinchot's juniper (Juniperus pinchotii), tree
- little bluestem (Schizachyrium scoparium), grass
- sideoats grama (Bouteloua curtipendula), grass

Community 1.1 Tall/Midgrass/Shrubs Community

Figure 8. 1.1 Tall/Midgrass/Shrubs Community

The interpretive or "reference" plant community for this site is a balanced mixture of tallgrasses - little bluestem (*Schizachyrium scoparium*), sand bluestem (*Andropogon hallii*); midgrasses - sideoats grama (*Bouteloua curtipendula*) and a few short grasses – blue grama (*Bouteloua gracilis*), buffalograss (Buchloe dactyloides) and hairy grama (*Bouteloua hirsuta*), a variety of perennial forbs – dotted gayfeather, (*Liatris punctata*), plains blackfoot daisy (*Melampodium leucanthum*), heath aster (Aster ericoides), western ragweed (*Ambrosia psilostachya*), gaura (Gaura spp), catclaw sensitivebriar (*Mimosa nuttallii*), and scattered short woody shrubs – feather dalea (*Dalea formosa*), skunkbush sumac (*Rhus trilobata*), and vine epedra (*Ephedra pedunculata*). A few scattered redberry juniper (*Juniperus pinchotii*), mesquite (*Prosopis glandulosa*) and hackberry (Celtis spp.) trees also occur.

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	560	897	1121
Tree	28	67	112
Shrub/Vine	56	67	101
Forb	56	112	101
Microbiotic Crusts	11	22	28
Total	711	1165	1463

Table 5. Annual production by plant type

Figure 10. Plant community growth curve (percent production by month). TX2047, Tall & Midgrass with Shrubs community. mid and tallgrasses, forbs and shrubs..

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	4	6	10	20	24	10	5	10	7	2	1

Community 1.2 Mid/Tallgrass/Shrubs Community

Figure 11. 1.2 Mid/Tallgrass/Shrubs Community

This community represents the first phase in the transition of the Tall/Midgrass/Shrubs Community (1.1) toward the Mid/Shortgrass/Shrubs Community (1.2). Tallgrasses such as little bluestem and sand bluestem decrease and midgrasses such as sideoats grama, sand dropseed (*Sporobolus cryptandrus*) and silver bluestem (*Bothriochloa laguroides*) dominate with some increase in perennial three-awns (Aristida spp.) with some low growing shrubs such as feather dalea, pricklypear (Opuntia spp.), elbowbush (*Forestiera pubescens*) and yucca (*Yucca glauca*). Redberry juniper increases to 10-15% woody canopy. Proper grazing and the use of prescribed burning can maintain or possibly restore this community to the reference community and prevent the transition toward the Shortgrass/Shrubland State. With further heavy continued grazing and fire suppression, the community will degrade toward the Short/Midgrass/Shrubs Community (2.1).

Table 6. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	448	673	897
Tree	39	84	168
Shrub/Vine	84	95	112
Forb	45	56	67
Microbiotic Crusts	6	11	22
Total	622	919	1266

Figure 13. Plant community growth curve (percent production by month). TX2048, Midgrasses and forbs. warm-season midgrasses and forbs..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	1	3	5	20	25	17	8	15	4	1	1

Pathway 1.1A Community 1.1 to 1.2

Tall/Midgrass/Shrubs Community

Mid/Tallgrass/Shrubs Community

With heavy continuous grazing and no fires, the Tall/Midgrass/Shrubs Community will shift to the Mid/Tallgrass/Shrubs Community.

Pathway 1.2A Community 1.2 to 1.1

Mid/Tallgrass/Shrubs Community

Tall/Midgrass/Shrubs Community

With Prescribed Grazing and Prescribed Burning, the Mid/Tallgrass/Shrubs Community can be reverted back to the Tall/Midgrass/Shrubs Community.

Conservation practices

Prescribed Grazing

State 2 Shortgrass/Shrubland State

The Short/Midgrass/Shrubs Community (2.1) occurs when little and sand bluestem decrease significantly, allowing midgrasses such as perennial three-awn, silver bluestem, and slim tridens to increase. Sideoats grama decreases in dominance and vigor. Shortgrasses such as buffalograss, hairy grama, and hairy tridens increase in density. Climax forbs decrease in frequency and diversity. Woody shrubs such as feather dalea, elbowbush and skunkbush sumac increase. Redberry juniper increases to 20% woody canopy.

Dominant plant species

- juniper (Juniperus), tree
- featherplume (Dalea formosa), shrub
- skunkbush sumac (Rhus trilobata), shrub
- buffalograss (Bouteloua dactyloides), grass

Community 2.1 Short/Midgrass/Shrubs Community

Figure 14. 2.1 Short/Midgrass/Shrubs Community

The Short/Midgrass/Shrubs Community (2.1) occurs when little and sand bluestem decrease significantly, allowing midgrasses such as perennial three-awn, silver bluestem, and slim tridens (Tridens mutica) to increase. Sideoats grama decreases in dominance and vigor. Shortgrasses such as buffalograss, hairy grama, and hairy tridens (*Erioneuron pilosum*) increase in density. Climax forbs decrease in frequency and diversity. Woody

shrubs such as feather dalea, elbowbush and skunkbush sumac increase. Redberry juniper increases to 20% woody canopy. More intense management using Prescribed Burning and Prescribed Grazing will be necessary to prevent further degradation to the Shrubs/Shortgrass Community (3.1). Brush management may be necessary to prevent competition from juniper.

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	336	504	673
Tree	56	146	224
Shrub/Vine	90	112	135
Forb	22	34	45
Microbiotic Crusts	-	6	11
Total	504	802	1088

Table 7. Annual production by plant type

Figure 16. Plant community growth curve (percent production by month). TX2049, shortgrass, shrubs & forbs community. warm- and cool-season forbs, shrubs and shortgrasses..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	1	3	8	16	25	5	5	10	16	8	3

State 3 Shrubland State

The Shrubs/Shortgrass Community (3.1) occurs when tallgrasses and midgrasses decrease to the extent that shortgrasses such as hairy grama, hairy tridens, and buffalograss dominate. Forbs decrease in abundance, contributing to increased bare ground, accelerated soil erosion and an increase of juniper more than 25% canopy. Broom snakeweed may increase, further deteriorating the ecology of the site.

Dominant plant species

- Pinchot's juniper (Juniperus pinchotii), tree
- broom snakeweed (Gutierrezia sarothrae), shrub
- hairy grama (Bouteloua hirsuta), grass
- buffalograss (Bouteloua dactyloides), grass

Community 3.1 Shrubs/Shortgrass Community

Figure 17. 3.1 Shrubs/Shortgrass Community

The Shrubs/Shortgrass Community (3.1) occurs when tallgrasses and midgrasses decrease to the extent that shortgrasses such as hairy grama, hairy tridens, and buffalograss dominate. Forbs decrease in abundance, contributing to increased bare ground, accelerated soil erosion and an increase of juniper more than 25% canopy. Broom snakeweed (*Gutierrezia sarothrae*) may increase, further deteriorating the ecology of the site. Production of forage available for grazing is less than 25% of the reference plant community. Mechanical Brush Management, Range Planting, and Prescribed Burning followed by prescribed grazing will be mandatory for any restoration of this site to the Mixed-grass/Shrubland State.

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	168	280	392
Tree	78	168	280
Shrub/Vine	101	135	168
Forb	11	22	34
Microbiotic Crusts	_	2	6
Total	358	607	880

Table 8. Annual production by plant type

Figure 19. Plant community growth curve (percent production by month). TX2050, Shrubs and Shortgrass community. shortgrasses, warm- and coolseason forbs, and short shrubs..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	1	3	8	16	25	5	5	10	16	8	3

Transition T1A State 1 to 2

With Heavy Continuous Grazing, No Fires, and No Brush Management, the Mixedgrass/Shrubland State can transition into the Shortgrass/Shrubland State.

Restoration pathway R2A State 2 to 1

With Prescribed Grazing, Brush Management and Prescribed Burning conservation practices, the Shortgrass/Shrubland State can be restored back to the Mixed-grass/Shrubland State.

Conservation practices

Brush Management	
Prescribed Burning	
Prescribed Grazing	

Transition T2A State 2 to 3

With Heavy Continuous Grazing, No Fires, No Brush Management, and Brush Invasion, the Mixed-grass/Shrubland State can transition into the Shrubland State.

Additional community tables

Table 9. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1	tall/midgrasses			448–588	
	sideoats grama	BOCUC	Bouteloua curtipendula var. caespitosa	224–588	-
	little bluestem	SCSC	Schizachyrium scoparium	224–588	Ι
2	mid/shortgrasses			112–224	
	Wright's threeawn	ARPUW	Aristida purpurea var. wrightii	0–224	_
	black grama	BOER4	Bouteloua eriopoda	0–224	_
	blue grama	BOGR2	Bouteloua gracilis	0–224	_
	hairy grama	BOHI2	Bouteloua hirsuta	0–224	_

	silver beardgrass	BOLAT	Bothriochloa laguroides ssp. torreyana	0–224	_
	hairy woollygrass	ERPI5	Erioneuron pilosum	0–224	_
	sand dropseed	SPCR	Sporobolus cryptandrus	0–224	
	slim tridens	TRMU	Tridens muticus	0–224	
3	tallgrass			140–224	
	sand bluestem	ANHA	Andropogon hallii	0–224	_
	Indiangrass	SONU2	Sorghastrum nutans	0–224	
4	mid/shortgrass			39–84	
	buffalograss	BODA2	Bouteloua dactyloides	0–84	_
	fall witchgrass	DICO6	Digitaria cognata	0–84	_
	tobosagrass	PLMU3	Pleuraphis mutica	0–84	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	0–84	
Forb)				
5	forbs			56–112	
	Forb, annual	2FA	Forb, annual	0–112	_
	Cuman ragweed	AMPS	Ambrosia psilostachya	0–112	_
	white sagebrush	ARLUM2	Artemisia ludoviciana ssp. mexicana	0–112	_
	woollypod milkweed	ASER	Asclepias eriocarpa	0–112	_
	yellow sundrops	CASE12	Calylophus serrulatus	0–112	
	rose heath	CHER2	Chaetopappa ericoides	0–112	_
	blacksamson echinacea	ECAN2	Echinacea angustifolia	0–112	_
	spearleaf buckwheat	ERLO4	Eriogonum Ionchophyllum	0–112	_
	warty spurge	EUSP	Euphorbia spathulata	0–112	_
	shaggy dwarf morning-glory	EVNU	Evolvulus nuttallianus	0–112	_
	western blanketflower	GASP	Gaillardia spathulata	0–112	_
	hoary false goldenaster	HECA8	Heterotheca canescens	0–112	_
	collegeflower	HYFL	Hymenopappus flavescens	0–112	_
	trailing krameria	KRLA	Krameria lanceolata	0–112	

	Gordon's bladderpod	LEGO	Lesquerella gordonii	0–112	-
	dotted blazing star	LIPU	Liatris punctata	0–112	_
	hoary blackfoot	MECI	Melampodium cinereum	0–112	_
	plains blackfoot	MELE2	Melampodium leucanthum	0–112	_
	blazingstar	MENTZ	Mentzelia	0–112	_
	Nuttall's sensitive- briar	MINU6	Mimosa nuttallii	0–112	_
	evening primrose	OENOT	Oenothera	0–112	_
	purple locoweed	OXLA3	Oxytropis lambertii	0–112	_
	yellow nailwort	PAVI4	Paronychia virginica	0–112	_
	Fendler's penstemon	PEFE	Penstemon fendleri	0–112	_
	white milkwort	POAL4	Polygala alba	0–112	_
	slimflower scurfpea	PSTE5	Psoralidium tenuiflorum	0–112	_
	earleaf fanpetals	SITR	Sida tragiifolia	0–112	_
	stemmy four-nerve daisy	TESC2	Tetraneuris scaposa	0–112	_
	Rocky Mountain zinnia	ZIGR	Zinnia grandiflora	0–112	_
Shru	ıb/Vine		·		
6	shrubs/vines			56–101	
	Christmas cactus	CYLE8	Cylindropuntia Ieptocaulis	0–101	_
	featherplume	DAFO	Dalea formosa	0–101	_
	vine jointfir	EPPE	Ephedra pedunculata	0–101	_
	stretchberry	FOPU2	Forestiera pubescens	0–101	_
	algerita	MATR3	Mahonia trifoliolata	0–101	_
	catclaw mimosa	MIACB	Mimosa aculeaticarpa var. biuncifera	0–101	-
	plains pricklypear	OPPO	Opuntia polyacantha	0–101	-
	skunkbush sumac	RHTR	Rhus trilobata	0–101	-
	soapweed yucca	YUGL	Yucca glauca	0–101	_
Tree	•				
7	trees			28–112	
	natlaaf hackharny		Coltis laovinata var	0_112	_

neucai nauruch y		reticulata	0-112	_
Pinchot's juniper	JUPI	Juniperus pinchotii	0–112	_
honey mesquite	PRGL2	Prosopis glandulosa	0–112	_

Animal community

White tail deer and mule deer utilize the site for browsing. The site has little cover for bobwhite quail but scaled quail frequent the site during feeding. The Texas horned lizard is often present along with several species of lizards and snakes. A few species of small mammals often find dens in rock crevices.

Hydrological functions

Runoff water from the site will enter streams lower on the landscape. The site yields considerable runoff due to steep slopes.

Recreational uses

Hunting, Camping, Hiking, Birdwatching, Photography, and Horseback Riding.

Wood products

None.

Other products

None.

Other information

None.

Inventory data references

NRCS FOTG – Section II of the FOTG Range Site Descriptions and numerous historical accounts

of vegetative conditions at the time of early settlement in the area were used in the development of this site description. Vegetative inventories were made at several site locations for support documentation. Several years of clipping data were surveyed.

Inventory Data References (documents): NRCS FOTG – Section II - Range Site Descriptions and NRCS Clipping Data summaries over a 20 year period

Other references

Natural Resources Conservation Service - Range Site Descriptions USDA-Natural Resources Conservation Service - Soil Surveys & Website soil database Rathjen, Frederick W., The Texas Panhandle Frontier, Rev. 1998, Univ. of Texas Press Hatch, Brown and Ghandi, Vascular Plants of Texas (An Ecological Checklist) Texas A&M Exp. Station, College Station, Texas Texas Tech University – Range, Wildlife & Fisheries Dept.

Technical Reviewers: Tony Garcia, Zone RMS, NRCS, Lubbock, Texas Clint Rollins, RMS, NRCS, Amarillo, Texas Mark Moseley, Acting State RMS, NRCS, San Antonio, Texas Jack Eckroat, Oklahoma Ecologist, NRCS, Stillwater, Oklahoma Justin Clary, RMS, NRCS, Temple, Texas

Contributors

James Crownover PES Edits by Tyson Morley, MLRA Soil Scientist, Altus, Oklahoma

Approval

Bryan Christensen, 9/15/2023

Acknowledgments

Site Development and Testing Plan:

Future work, as described in a Project Plan, to validate the information in this Provisional Ecological Site Description is needed. This will include field activities to collect low, medium and high intensity sampling, soil correlations, and analysis of that data. Annual field reviews should be done by soil scientists and vegetation specialists. A final field review, peer review, quality control, and quality assurance reviews of the ESD will be needed to produce the final document.

Annual reviews of the Project Plan are to be conducted by the Ecological Site Technical Team.

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be

known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Stan Bradbury, Zone RMS, NRCS, Lubbock, Texas
Contact for lead author	806-791-0581
Date	09/04/2007
Approved by	Bryan Christensen
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills: Due to the percent slopes, rills will be common.
- 2. **Presence of water flow patterns:** Due to the percent slopes, water flow patterns will be common.
- 3. Number and height of erosional pedestals or terracettes: Due to the percent slopes, pedestals/terracettes will be common.
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): 25-30% mineral soil; low percentage due to rock fragments scattered throughout the profile.
- 5. Number of gullies and erosion associated with gullies: Slight to moderate.
- 6. Extent of wind scoured, blowouts and/or depositional areas: None to slight.

7. Amount of litter movement (describe size and distance expected to travel): Slight to

moderate.

- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): If the soil surface is unprotected by vegetation, the sloping soil is highly susceptible to water erosion.
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Calcareous loam to fine sandy loam; moderate SOM.
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Low vegetative cover and percent slopes makes this site susceptible to erosion. This site is a slowly permeable soil, well-draiend and available water holding capacity is low. Plant growth and production is limited due to very shallow depth.
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Warm-season tallgrasses >

Sub-dominant: Warm-season midgrasses > Warm-season shortgrasses >

Other: Forbs > Shrubs/Vines > Trees

Additional:

13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): Plant mortality and decadence is minimal.

- 14. Average percent litter cover (%) and depth (in): Litter is dominantly herbaceous.
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): 650 1,300 pounds per acre.
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Juniper and mesquite can be invasive.
- 17. **Perennial plant reproductive capability:** All plant species should be capable of reproduction, except during periods of prolonged drought conditions, heavy natural herbivory or intense wildfires.