

Ecological site R042CY745TX Limestone Canyon Bottomland

Accessed: 05/21/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

F042CY020TX	Limestone Mountain (North Aspect) 20-26" PZ Limestone Mountain (North Aspect) is on steep north facing slopes mostly above 2,286 m in elevation. Soils are mostly shallow to limestone bedrock and clayey. The reference plant community is a mixed conifer forest.
F042CY021TX	Limestone Mountain (South Aspect) 20-26" PZ The Limestone Mountain (South Aspect) occurs on mountain slopes and ridgetops, at elevations generally above 2,286 m. Aspects are predominantly south facing or neutral. Soils are mostly shallow to limestone bedrock, gravelly, and loamy. The reference plant community is a ponderosa pine savanna.
R070CY102NM	Shallow Limestone Shallow Limestone occurs on limestone hills with 10 to 50 percent slope gradient. Soils are shallow to limestone bedrock. HCPC is mixed prairie grassland with scattered forbs, shrubs, and trees.
R070CY109NM	Loamy Loamy is a flood plain, stream terrace, arroyo, or basin floor with nongravelly or cobbly soils. HCPC is mixed prairie grassland with scattered shrubs, forbs, and trees.
R070CY115NM	Breaks Breaks are escarpments with slopes ranging 40-95 percent gradient. Soils are shallow to bedrock. HCPC is a mountain shrubland with few scattered trees.

Associated sites

Similar sites

R070CY109NM	Loamy
	Loamy is a flood plain, stream terrace, arroyo, or basin floor with nongravelly or cobbly soils. HCPC is mixed prairie grassland with scattered shrubs, forbs, and trees.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

The site occurs on nearly level mountain canyons and drainageways that are occasionally to frequently flooded. Runoff is negligible on 0 to 1 percent slopes and low on slopes over 1 percent. Elevation ranges from 5000 to 6400 feet. The site is occasionally to frequently flooded.

Table 2. Representative physiographic features

Landforms	(1) Canyon (2) Drainageway
Flooding frequency	Occasional to frequent
Ponding frequency	None
Elevation	1,524–1,951 m
Slope	0–3%
Water table depth	183 cm
Aspect	Aspect is not a significant factor

Climatic features

The climate of the area is "semi-arid continental."

The average annual precipitation ranges from 13 to 16 inches. Variations of 5 inches, more or less, are not uncommon. Seventy-five percent of the precipitation falls from April to October. Most of the summer precipitation comes in the form of high intensity-short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is about 50 degrees F with

extremes of -29 degrees F in the winter and 103 degrees F in the summer.

The average frost-free season is 130 to 160 days. The last killing frost falling in early May and the first killing frost in early October.

Both temperature and precipitation favor warm-season perennial species. However, about 40 percent of the annual precipitation falls at a time favorable to cool-season plant growth. The soils of this site can store water from winter and early spring moisture for use by cool-season species. This allows the cool-season species to occupy an important component of this site. Strong wind from the west and southwest that blow from February to June can rapidly dry the soil profile during a critical period for cool-season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	173 days
Freeze-free period (average)	187 days
Precipitation total (average)	406 mm

Influencing water features

Soil features

The site consists of very deep and well drained soils that formed in gravelly alluvium derived mostly from limestone. Permeability is moderately rapid. Typically, the surface layer is dark grayish brown gravelly sandy loam. Riverwash consists of areas of cobbles and gravels in the main stream channel. These areas typically have little to no vegetation and undergo repeated high intensity flash flooding.

Table 4. Representative soil features

Parent material	(1) Alluvium–limestone
Surface texture	(1) Gravelly sandy loam
Family particle size	(1) Loamy
Drainage class	Well drained
Permeability class	Moderately slow
Soil depth	41–157 cm
Surface fragment cover <=3"	0%

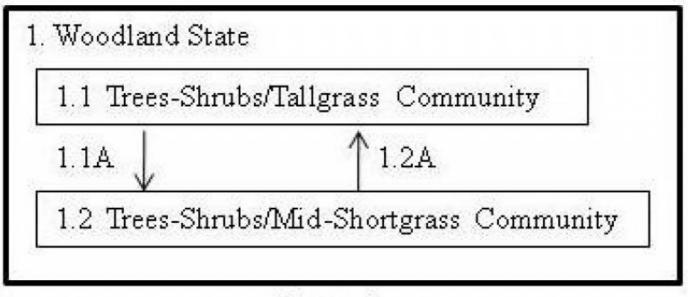
Surface fragment cover >3"	0–20%
Calcium carbonate equivalent (0-101.6cm)	0–25%
Electrical conductivity (0-101.6cm)	0–1 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0
Soil reaction (1:1 water) (0-101.6cm)	6.6–7.3
Subsurface fragment volume <=3" (Depth not specified)	0–15%
Subsurface fragment volume >3" (Depth not specified)	0–10%

Ecological dynamics

The reference plant community for this site is a riparian woodland that consists of mixed hardwoods, pines, shrubs, and both mid and tall grasses. The vegetation of this site occurs on the banks of a streambed and its first terrace or active floodplain. The riverwash, or streambed, is a component of the map unit but it is not correlated with an ecological site because it lacks stable vegetation. However, vegetation does begin to establish once alluvial deposits begin to stabilize.

Vegetation within this site is a dynamic complex of discontinuous plant communities responding to numerous environment controls such as watershed area, terrace shape and width, nature and relative position of depositional features such as terraces, gravel bars, frequency and amount of runoff, alluvial fragment size, depth of bedrock, and presence of perennial water sources. With the exception of perennial springs in some locations, canyon bottomlands are dry most of the year. They are subject to flash floods during the summer rainy season. It may be reasonable to assume that during pre-settlement times, plant communities along arroyos existed as a shifting mosaic.

The most significant natural disturbance that has historically and currently is still shaping the plant communities is flash floods. The severity of these floods and their effects vary. Generally, there is very little fire activity in this riparian zone due to high moisture levels (NPS 2005). The natural breaks present in wetter, rockier canyon bottoms limit the extent of fires when they do move in from neighboring communities (NPS 2005).


Many types of wildlife utilize this site currently and most likely did so in the past. Mule deer is probably the most frequently seen native grazer/browser utilizing this site.

The following diagram suggests general pathways that the vegetation on this site might follow. There are other plant communities and states not shown on the diagram. This

information is intended to show what might happen in a given set of circumstances; it does not mean that this would happen the same way in every instance. Local professional guidance should always be sought before pursuing a treatment scenario.

State and transition model

Limestone Canyon Bottomland R070CY745TX

Legend

1.1A Heavy Continuous Grazing1.2A Prescribed Grazing or No Grazing

State 1 Woodland State

The Trees-Shrubs/Tallgrass Community is characterized by several plant community potentials resulting from different plant environments. Narrow canyon bottoms will have limited daily sunlight and will typically have a high canopy cover percentages of trees such as bigtooth maple, chinkapin oak, alligator juniper, and ponderosa pine. Shade tolerant grasses will coexist. As the bottomland widens, tree canopy cover decreases and shade intolerant grasses increase. Scouring flash floods and small wildfires will maintain a discontinuous mosaic of plant communities. Annual production ranges from 2450 to 5250 pounds per acre. The Trees-Shrubs/Mid-Shortgrass Community is characterized by a herbaceous component that consists mostly of unpalatable mid and shortgrasses such as hairy grama and perennial threeawns. Tallgrasses such as yellow indiangrass, big

bluestem, and littlebluestem will be subdominants. In some areas, shrubs such as sotol and catclaw mimosa will increase.

Community 1.1 Trees-Shrubs/Tallgrass Community

Figure 4. 1.1 Bigtooth maple with few grasses

Figure 5. 1.1 Bigtooth maple, chinkapin oak, pine muhly and

Figure 6. 1.1 Stream with Jamaica sawgrass and mixed shrubs

Figure 7. 1.1 Little bluestem/muhly with oak, juniper, and p

This site is characterized by several plant community potentials resulting from different plant environments. Narrow canyon bottoms will have limited daily sunlight and will typically have a high canopy cover percentages of trees such as bigtooth maple, chinkapin oak, alligator juniper, and ponderosa pine. Shade tolerant grasses will coexist. As the bottomland widens, tree canopy cover decreases and shade intolerant grasses increase such as littlebluestem, big bluestem, yellow indiangrass, bull muhly, pine muhly, and sideoats grama. Common shrubs include sotol, desert ceanothus, cliff fendlerbush, Mexican orange, apache plume, skunkbush sumac, and New Mexico agave. Grass-likes such as Jamaica sawgrass and bottlebrush sedge grow along the banks of perennial streams or areas with a very shallow groundwater depth. Scouring flash floods and small wildfires will maintain a discontinuous mosaic of plant communities.

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Tree	1121	2242	3363
Grass/Grasslike	897	1121	1345
Shrub/Vine	673	897	1121
Forb	56	112	168
Total	2747	4372	5997

Figure 9. Plant community growth curve (percent production by month). NM4325, Trees-Shrubs/Tallgrass Community. Mixture of oaks, junipers, and pines with tallgrasses such as big bluestem, little bluestem, and indiangrass..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
2	2	4	6	9	14	24	24	7	4	2	2

Community 1.2 Trees-Shrubs/Mid-Shortgrass Community

This plant community phase is characterized by a herbaceous component that consists mostly of unpalatable mid and shortgrasses such as hairy grama and perennial threeawns. Tall grasses such as yellow indiangrass, big bluestem, and littlebluestem will be subdominants. In some areas, shrubs such as sotol and catclaw mimosa will increase.

Table 6. Annual	production	by plant type
-----------------	------------	---------------

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Tree	1121	2242	3363
Grass/Grasslike	897	1121	1345
Shrub/Vine	673	897	1121
Forb	56	112	168
Total	2747	4372	5997

Figure 11. Plant community growth curve (percent production by month). NM4326, Trees-Shrubs/Mid/Shortgrass Community. Mixture of oaks, junipers, and pines with shortgrasses such as hairy grama and threeawn species..

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	1	5	7	9	14	24	24	8	5	1	1

Pathway 1.1A Community 1.1 to 1.2

Heavy continuous grazing by domestic cattle will shift the grass dominance from the palatable tall grasses to the less palatable mid and shortgrasses such as perennial threeawn and hairy grama. Overutilization by goats can potentially limit the reproduction of maples, Texas madrone, mountain mahogany, and other palatable browse.

Pathway 1.2A Community 1.2 to 1.1

The Trees-Shrubs/Mid-Shortgrass Community can be restored back to the Trees-Shrubs/Tallgrass Community with Prescribed grazing or no grazing which will allow the tallgrasses to recover.

Conservation practices

Prescribed Grazing

Additional community tables

Table 7. Community 1.1 p	plant community composition
--------------------------	-----------------------------

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm-season Tallgrasses			448–673	
	big bluestem	ANGE	Andropogon gerardii	112–336	-
	bullgrass	MUEM	Muhlenbergia emersleyi	112–336	Ι
	little bluestem	SCSC	Schizachyrium scoparium	112–336	Ι
	Indiangrass	SONU2	Sorghastrum nutans	112–336	_
2	Midgrasses			235–336	
	sideoats grama	BOCU	Bouteloua curtipendula	56–112	_
	blue grama	BOGR2	Bouteloua gracilis	56–112	_
	pine muhly	MUDU	Muhlenbergia dubia	56–112	_
	New Mexico muhly	MUPA2	Muhlenbergia pauciflora	56–112	_
	plains lovegrass	ERIN	Eragrostis intermedia	34–67	_
	cane bluestem	BOBA3	Bothriochloa barbinodis	34–67	_
	curlyleaf muhly	MUSE	Muhlenbergia setifolia	28–56	_
3	Shortgrasses			34–67	

	purple threeawn	ARPU9	Aristida purpurea	17–34	_
	hairy grama	BOHI2	Bouteloua hirsuta	17–34	_
	western panicgrass	DIACF	Dichanthelium acuminatum var. fasciculatum	17–34	_
	hairy woollygrass	ERPI5	Erioneuron pilosum	17–34	_
	common wolfstail	LYPH	Lycurus phleoides	17–34	_
	Hall's panicgrass	PAHA	Panicum hallii	17–34	_
4	Cool-season grass	es		135–202	
	New Mexico feathergrass	HENE5	Hesperostipa neomexicana	28–56	_
	squirreltail	ELEL5	Elymus elymoides	17–34	_
	pinyon ricegrass	PIFI	Piptochaetium fimbriatum	17–34	_
	Arizona fescue	FEAR2	Festuca arizonica	11–28	
	threeflower melicgrass	MENI	Melica nitens	11–28	-
5	Grasslikes			45–67	
	bottlebrush sedge	CAHY4	Carex hystericina	22–45	_
	Jamaica swamp sawgrass	CLMAJ	Cladium mariscus ssp. jamaicense	22–45	_
Shru	ub/Vine				
6	Shrubs			471–785	
	desert ceanothus	CEGR	Ceanothus greggii	39–84	_
	alderleaf mountain mahogany	CEMO2	Cercocarpus montanus	39–84	_
	Mexican orange	CHDU	Choisya dumosa	39–84	_
	damianita	CHME3	Chrysactinia mexicana	39–84	_
	javelina bush	COER5	Condalia ericoides	39–84	
	Apache plume	FAPA	Fallugia paradoxa	39–84	
	cliff fendlerbush	FERU	Fendlera rupicola	39–84	
	eggleaf silktassel	GAOV	Garrya ovata	39–84	
	western white honeysuckle	LOAL	Lonicera albiflora	39–84	
	catclaw mimosa	MIACB	Mimosa aculeaticarpa var. biuncifera	39–84	_
	pungent oak	QUPU	Quercus pungens	39–84	
	skunkbush sumac	RHTR	Rhus trilobata	39–84	
	evergreen sumac	RHVI3	Rhus virens	39–84	_

	1				
	arroyo willow	SALA6	Salix lasiolepis	39–84	-
7	Fibrous/Succulent	ts		168–280	
	green sotol	DALE2	Dasylirion leiophyllum	39–112	-
	Texas sacahuista	NOTE	Nolina texana	28–84	_
	pricklypear	OPUNT	Opuntia	28–84	_
	slimfoot century plant	AGGR4	Agave gracilipes	28–84	-
	Parry's agave	AGPAN6	Agave parryi ssp. neomexicana	28–84	-
8	Vines			34–56	
	bluebill	CLPIP	Clematis pitcheri var. pitcheri	17–34	_
	canyon grape	VIAR2	Vitis arizonica	17–34	-
Tree					
9	Trees			1121–3363	
	bigtooth maple	ACGR3	Acer grandidentatum	112–560	_
	ponderosa pine	PIPO	Pinus ponderosa	112–560	_
	gray oak	QUGR3	Quercus grisea	112–560	_
	chinquapin oak	QUMU	Quercus muehlenbergii	112–560	_
	twoneedle pinyon	PIED	Pinus edulis	112–448	_
	alligator juniper	JUDE2	Juniperus deppeana	112–448	_
	little walnut	JUMI	Juglans microcarpa	84–168	_
	common hoptree	PTTR	Ptelea trifoliata	84–168	-
	black cherry	PRSE2	Prunus serotina	84–168	_
	Texas madrone	ARXA80	Arbutus xalapensis	84–168	_
	velvet ash	FRVE2	Fraxinus velutina	84–168	_
	Pinchot's juniper	JUPI	Juniperus pinchotii	28–112	_
	Rocky Mountain juniper	JUSC2	Juniperus scopulorum	17–84	_
	oneseed juniper	JUMO	Juniperus monosperma	17–84	_
	Rocky Mountain Douglas-fir	PSMEG	Pseudotsuga menziesii var. glauca	17–84	_
Forb					
10	Perennials			56–168	
	Forb, perennial	2FP	Forb, perennial	11–28	_
	golden columbine	AQCH	Aquilegia chrysantha	6–17	_

	butterfly milkweed	ASTU	Asclepias tuberosa	6–17	_
	greeneyes	BERLA	Berlandiera	6–17	_
	Mexican cancer- root	COALM	Conopholis alpina var. mexicana	6–17	_
	buckwheat	ERIOG	Eriogonum	6–17	_
	needleleaf bluet	HOACA2	Houstonia acerosa var. acerosa	3–17	_
	menodora	MENOD	Menodora	6–17	_
	beardtongue	PENST	Penstemon	6–17	_
	polygala	POLYG	Polygala	3–17	_
	noseburn	TRAGI	Tragia	3–17	_
11	Annuals		3–11		
	Forb, annual	2FA	Forb, annual	3–11	_

Animal community

Some portions of the site can be suited for conservative livestock grazing. Riparian areas, however, can be very sensitive to overutilization. A reduction in herbaceous composition can make the site more susceptible erosion especially when flash floods occur.

Mule deer are one of the most common animals seen in this site. Nocturnal mammals such as skunks and raccoons can also be found here. Long-ear sunfish can be seen in some of the springs in the park, as well as in McKittrick Canyon. The stream through McKittrick Canyon is also home to a small population of rainbow trout. Although amphibians are rare in the desert, the Rio Grande leopard frog can occasionally be encountered near spring fed pools in McKittrick Canyon, or at Manzanita and Smith Springs. Rocky canyons are home to ringtails, rock squirrels, and a variety of reptiles including rock and black-tailed rattlesnakes, mountain patchnose snakes, and tree lizards (NPS).

Plant Preference by Animal Kind:

These preferences are somewhat general in nature as the preferences for plants is dependent upon grazing experience, time of year, availability of choices, and total forage supply.

Legend: P=Preferred D=Desirable U=Undesirable N=Not Consumed T=Toxic X=Used, but not degree of utilization unknown

Preferred – Percentage of plant in animal diet is greater than it occurs on the land Desirable – Percentage of plant in animal diet is similar to the percentage composition on the land

Undesirable – Percentage of plant in animal diet is less than it occurs on the land

Not Consumed – Plant would not be eaten under normal conditions. Only consumed when other forages not available.

Toxic – Rare occurrence in diet and, if consumed in any tangible amounts results in death or severe illness in animal

Hydrological functions

The site is located in both a surface water run-in and runoff position. Depth to groundwater effects species composition.

Recreational uses

The site can be used for hiking.

Wood products

None.

Other products

None.

Other information

None.

Inventory data references

Information presented here has been developed from NRCS clipping, composition, plant cover, soils data and ecological interpretations gained by field observation.

Contributors

Michael Margo Michael Margo, RMS, NRCS, Marfa, Texas

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):

- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment

and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:

17. Perennial plant reproductive capability: