

Ecological site R032XY322WY Loamy (Ly) 10-14" East Precipitation Zone

Accessed: 05/21/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R032XY304WY	Clayey (Cy) 10-14" East Precipitation Zone
R032XY328WY	Lowland (LL) 10-14" East Precipitation Zone
R032XY350WY	Sandy (Sy) 10-14" East Precipitation Zone

Similar sites

R032XY122WY	Loamy (Ly) 5-9" Big Horn Basin Precipitation Zone
R032XY222WY	Loamy (Ly) 5-9" Wind River Basin Precipitation Zone

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occurs on near level to gently undulating rolling land and on slope generally less than 20%.

Table 2. Representative physiographic features

Landforms	(1) Hill(2) Alluvial fan(3) Ridge
Elevation	1,646–2,286 m
Slope	0–30%
Ponding depth	0 cm
Aspect	Aspect is not a significant factor

Climatic features

Annual Precipitation and modeled relative effective annual precipitation ranges from 10 to 14 inches (254 – 355 mm). The normal precipitation pattern shows peaks in May and June and a secondary peak in September. This amounts to about 50% of the mean annual precipitation. Much of the moisture that falls in the latter part of the summer is lost by evaporation and much of the moisture that falls during the winter is lost by sublimation. Average snowfall is about 20 inches annually. Wide fluctuations may occur in yearly precipitation and result in more dry years than those with more than normal precipitation.

Temperatures show a wide range between summer and winter and between daily maximums and minimums, due to the high elevation and dry air, which permits rapid incoming and outgoing radiation. Cold air outbreaks from Canada in winter move rapidly from northwest to southeast and account for extreme minimum temperatures. Chinook

winds may occur in winter and bring rapid rises in temperature. Extreme storms may occur during the winter, but most severely affect ranch operations during late winter and spring. High winds are generally blocked form the basin by high mountains, but can occur in conjunction with an occasional thunderstorm.

Growth of native cool-season plants begins about April 1st and continues to about July 1st. Cool weather and moisture in September may produce some green up of cool season plants that will continue to late October.

For detailed information visit the Natural Resources Conservation Service National Water and Climate Center at http://www.wcc.nrcs.usda.gov/. "Black MTN", "Clark 3NE", "Cody", "Cody 12SE", "Heart Mtn", Powelll Fld Stn", and "Tensleep 16SSE" are the representative weather stations within LRU D. The following graphs and charts are a collective sample representing the averaged normals and 30 year annual rainfall data for the selected weather stations from 1981 to 2010.

Table 3. Representative climatic features

Frost-free period (average)	111 days
Freeze-free period (average)	146 days
Precipitation total (average)	305 mm

Influencing water features

Stream Type: None

Soil features

The soils of this site are very deep to moderately deep (greater than 20" to bedrock), moderately well to well-drained & moderately slow to moderate permeable. The soil characteristic having the most influence on plant community is the available moisture and the potential to develop soluble salts near the surface.

Major Soil Series correlated to this site include: Lupinto, Frisite, Rock River, Sinkson, Elkol, Grieves, Yamac, Luhon, Rootel

Table 4. Representative soil features

Surface texture	(1) Loam (2) Fine sandy loam (3) Sandy loam
Family particle size	(1) Loamy
Drainage class	Moderately well drained to well drained

Permeability class	Moderately slow to moderate
Soil depth	51–152 cm
Surface fragment cover <=3"	0–10%
Surface fragment cover >3"	0%
Available water capacity (0-101.6cm)	7.62–16 cm
Calcium carbonate equivalent (0-101.6cm)	0–20%
Electrical conductivity (0-101.6cm)	0–8 mmhos/cm
Sodium adsorption ratio (0-101.6cm)	0–13
Soil reaction (1:1 water) (0-101.6cm)	7.4–9
Subsurface fragment volume <=3" (Depth not specified)	0–15%
Subsurface fragment volume >3" (Depth not specified)	0–10%

Ecological dynamics

Potential vegetation on this site is dominated by mid cool-season perennial grasses. Other significant vegetation includes winterfat, big sagebrush, and a variety of forbs. The expected potential composition for this site is about 75% grasses, 10% forbs and 15% woody plants. The composition and production will vary naturally due to historical use, fluctuating precipitation and fire frequency.

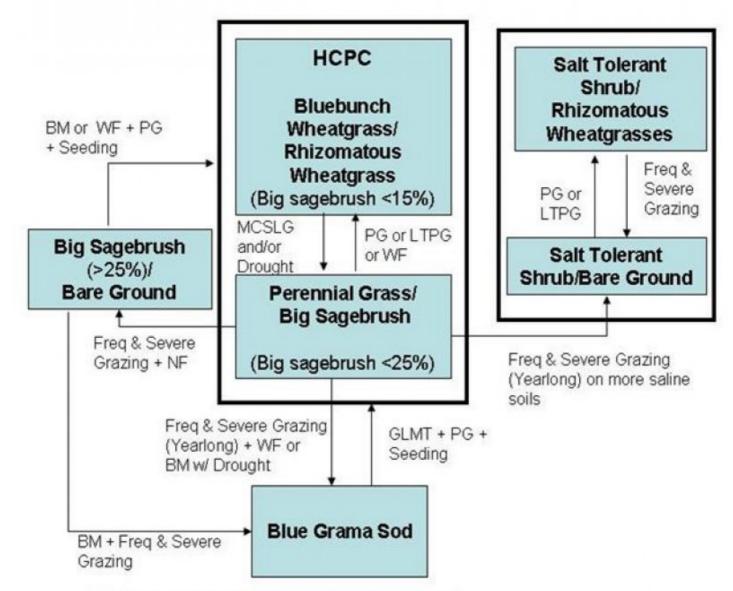
As this site deteriorates species such as blue grama, Sandberg bluegrass, and big sagebrush will increase. Plains pricklypear and weedy annuals will invade. Cool-season grasses such as Griffiths and bluebunch wheatgrass, rhizomatous wheatgrasses, needleandthread, and Indian ricegrass will decrease in frequency and production.

Big sagebrush may become dominant on areas with an absence of fire and sufficient amount of precipitation. Wildfires are actively controlled in recent times and as a resulted old decadent stands of big sagebrush persist. Chemical control using herbicides has replaced the historic role of fire on this site. Recently, prescribed burning has regained some popularity.

Due to the amount and pattern of the precipitation, the big sagebrush component may not be resilient once it has been removed or severely reduced if a vigorous stand of grass exists and is maintained. On these areas, blue grama may become dominant if the area is subjected to a combination of frequent and severe grazing especially yearlong grazing. As

a result, a dense sod cover of blue grama will become established.

The Historic Climax Plant Community (description follows the plant community diagram) has been determined by study of rangeland relic areas, or areas protected from excessive disturbance. Trends in plant communities going from heavily grazed areas to lightly grazed areas, seasonal use pastures, and historical accounts have also been used.


The following is a State and Transition Model Diagram that illustrates the common plant communities (states) that can occur on the site and the transitions between these communities. The ecological processes will be discussed in more detail in the plant community narratives following the diagram.

Plant Community Narratives

Following are the narratives for each of the described plant communities. These plant communities may not represent every possibility, but they probably are the most prevalent and repeatable plant communities. The plant composition tables shown above have been developed from the best available knowledge at the time of this revision. As more data is collected, some of these plant communities may be revised or removed, and new ones may be added. None of these plant communities should necessarily be thought of as "Desired Plant Communities". According to the USDA NRCS National Range and Pasture Handbook, Desired Plant Communities (DPC's) will be determined by the decision-makers and will meet minimum quality criteria established by the NRCS. The main purpose for including any description of a plant community here is to capture the current knowledge and experience at the time of this revision.

State and transition model

Site Type: Rangeland Loamy 10-14" E
MLRA: 32 – Northern Intermountain Desertic Basins 032XY322WY

BM - Brush Management (fire, chemical, mechanical)

Freq. & Severe Grazing - Frequent and Severe Utilization of the Coolseason Mid-grasses during the Growing Season

GLMT - Grazing Land Mechanical Treatment

LTPG - Long-term Prescribed Grazing

MCSLG - Moderate, Continuous Season-long Grazing

NU, NF - No Use and No Fire

PG - Prescribed Grazing (proper stocking rates with adequate recovery periods during the growing season)

VLTPG - Very Long-term Prescribed Grazing (could possibly take generations)

WF - Wildfire (Natural or Human Caused)

State 1 Bluebunch Wheatgrass/Rhizomatous Wheatgrass

Community 1.1 Bluebunch Wheatgrass/Rhizomatous Wheatgrass

This plant community is the interpretive plant community for this site and is considered to be the Historic Climax Plant Community (HCPC). This state evolved with grazing by large herbivores and periodic fires. The cyclical natural of the fire regime in this community prevented big sagebrush from being the dominant landscape. This plant community can be found on areas that are properly managed with grazing and/or prescribed burning, and on areas receiving occasional short periods of rest. The potential vegetation is about 75% grasses or grass-like plants, 10% forbs, and 15% woody plants. This state is dominated by cool season mid-grasses. The major grasses include Griffiths and bluebunch wheatgrasses, rhizomatous wheatgrasses, needleandthread, and Indian ricegrass. Other grasses occurring in this state include bottlebrush squirreltail, prairie junegrass, and Sandberg bluegrass. Big sagebrush is a conspicuous element of this state, occurs in a mosaic pattern, and makes up 5 to 15% of the annual production. Winterfat is a common component found on this site. A variety of forbs also occurs in this state and plant diversity is high (see Plant Composition Table). The total annual production (air-dry weight) of this state is about 800 lbs./acre, but it can range from about 500 lbs./acre in unfavorable years to about 1100 lbs./acre in above average years. This plant community is extremely stable and well adapted to the Northern Intermountain Desertic Basins climatic conditions. The diversity in plant species allows for high drought tolerance. This is a sustainable plant community (site/soil stability, watershed function, and biologic integrity). Transitions or pathways leading to other plant communities are as follows: • Moderate, continuous season-long grazing will convert the plant community to the Perennial Grass/Big Sagebrush Plant Community. Prolonged drought will exacerbate this transition.

Figure 6. Plant community growth curve (percent production by month). WY0701, 10-14E upland sites.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			5	25	40	10	5	10	5		

State 2 Perennial Grass/ Big Sagebrush

Community 2.1 Perennial Grass/ Big Sagebrush

Historically, this plant community evolved under grazing and a low fire frequency. Currently, it is found under moderate, season-long grazing by livestock and will be exacerbated by prolonged drought conditions. In addition, the fire regime for this site has been modified and extended periods without fire is now common. This plant community is

still dominated by cool-season grasses, while short warm-season grasses and miscellaneous forbs account for the balance of the understory. Wyoming big sagebrush is now a conspicuous part of the overall production and accounts for the majority of the overstory. The dominant grasses include Griffiths and bluebunch wheatgrasses, rhizomatous wheatgrasses, and needleandthread. Grasses and grass-like species of secondary importance include prairie junegrass, blue grama, Sandberg bluegrass, and threadleaf sedge. Forbs commonly found in this plant community include scarlet globemallow, fringed sagewort, wavyleaf paintbrush, little larkspur, and Hood's phlox. Sagebrush can make up to 25% of the annual production. The overstory of sagebrush and understory of grasses and forbs provide a diverse plant community. When compared to the Historic Climax Plant Community, big sagebrush and blue grama have increased. Plains pricklypear cactus will also have invaded, but occurs only in small patches. Indian ricegrass has decreased and may occur in only trace amounts under the sagebrush canopy or within the patches of pricklypear. In addition, the amount of winterfat may or may not have changed depending on the season of use. The total annual production (airdry weight) of this state is about 600 pounds per acre, but it can range from about 400 lbs./acre in unfavorable years to about 900 lbs./acre in above average years. This plant community is resistant to change. The herbaceous species present are well adapted to grazing; however, species composition can be altered through long-term overgrazing. The herbaceous component is mostly intact and plant vigor and replacement capabilities are sufficient. Water flow patterns and litter movement may be occurring but only on steeper slopes. Incidence of pedestalling is minimal. Soils are mostly stable and the surface shows minimum soil loss. The watershed is functioning and the biotic community is intact. Transitions or pathways leading to other plant communities are as follows: • Prescribed grazing or possibly long-term prescribed grazing, will convert this plant community to the HCPC. The probability of this occurring is high especially if rotational grazing along with short deferred grazing is implemented as part of prescribed method of use. In addition, the removal of fire suppression will allow a somewhat natural fire regime to reoccur to more easily transition between this plant community and the HCPC. A prescribed fire treatment can be useful to hasten this transition, if desired. • Frequent and severe grazing plus no fire on soils with limited soluble salts, will convert the plant community to the Big Sagebrush/Bare Ground Plant Community. The probability of this occurring is high. This is especially evident on areas with historically higher precipitation and the sagebrush stand is not adversely impacted by drought or heavy browsing. • Frequent and severe grazing (yearlong grazing) plus wildfire or brush control, will convert the plant community to the Blue Grama Sod Plant Community. The probability of this occurring is high, especially if the sagebrush stand has been severely affected by drought or heavy use or has been removed altogether. • Frequent and severe grazing (yearlong grazing) on more saline soils, will convert the plant community to the Salt Tolerant Shrub/Bare Ground Plant Community. The probability of this occurring is high especially on soils with elevated salts and the sagebrush stand has been severely affected by drought and heavy use or has been removed altogether.

Figure 7. Plant community growth curve (percent production by month). WY0701, 10-14E upland sites.

,	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
				5	25	40	10	5	10	5		

State 3 Big Sagebrush/ Bare ground

Community 3.1 Big Sagebrush/ Bare ground

This plant community is the result of frequent and severe grazing and protection from fire. Sagebrush dominates this plant community, as the annual production of sagebrush excess 25%. Wyoming big sagebrush is a significant component of the plant community and the preferred cool season grasses have been greatly reduced. The dominant grasses are prairie junegrass, Sandberg bluegrass, and blue grama. Weedy annual species such as cheatgrass may occupy the site if a seed source is available. Cactus and sageworts often invade. Noxious weeds such as Russian knapweed, leafy spurge, or Canada thistle may invade the site if a seed source is available. The interspaces between plants have expanded leaving the amount of bare ground more prevalent. As compared with the HCPC or the Perennial Grass/Big Sagebrush Plant Communities, the annual production is less, but the shrub production compensates for some of the decline in the herbaceous production. The total annual production (air-dry weight) of this state is about 500 pounds per acre, but it can range from about 300 lbs./acre in unfavorable years to about 700 lbs./acre in above average years. This plant community is resistant to change as the stand becomes more decadent. These areas may actually be more resistant to fire as less fine fuels are available and the bare ground between the sagebrush plants is increased. Continued frequent and severe grazing or the removal of grazing does not seem to affect the composition or structure of the plant community. Plant diversity is moderate to poor. The plant vigor is diminished and replacement capabilities are limited due to the reduced number of cool-season grasses. Plant litter is noticeably less when compared to the HCPC. Soil erosion is accelerated because of increased bare ground. Water flow patterns and pedestalling are obvious. Infiltration is reduced and runoff is increased. Rill channels may be noticeable in the interspaces and gullies may be establishing where rills have concentrated down slope. Transitions or pathways leading to other plant communities are as follows: • Brush management, followed by prescribed grazing, will return this plant community at or near the HCPC. If prescribed fire is used as a means to reduce or remove the shrubs, sufficient fine fuels will need to be present. This may require deferment from grazing prior to treatment. Post management is critical to ensure success. This can range from two or more years of rest to partial growing season deferment, depending on the condition of the understory at the time of treatment and the growing conditions following treatment. In the case of an intense wildfire that occurs when desirable plants are not completely dormant, the length of time required to reach the HCPC may be increased and seeding of natives is recommended. • Brush management, followed by frequent and severe grazing, will convert the plant community to the Blue Grama Sod Plant Community.

Figure 8. Plant community growth curve (percent production by month). WY0701, 10-14E upland sites.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			5	25	40	10	5	10	5		

State 4 Blue grama Sod

Community 4.1 Blue grama Sod

This plant community is the result of frequent and severe yearlong grazing, which has adversely affected the perennial grasses as well as impacted the shrub component. Other factors that can affect the shrubs include drought, heavy browsing, wildfires, and/or human brush control measures. A dense sod of blue grama with patches of threadleaf sedge dominates this state. Pricklypear cactus can become dense enough in patches so that livestock cannot graze forage growing within the cactus clumps. Big sagebrush has been reduced to small patches or in some cases removed. Rubber rabbitbrush may be the sole remaining shrub on the site. When compared to the Historic Climax Plant Community, blue grama and threadleaf sedge, have increased. Pricklypear has invaded. All coolseason mid-grasses, forbs, and most shrubs have been greatly reduced. Production has been significantly decreased. The total annual production (air-dry weight) of this state is about 200 pounds per acre, but it can range from about 100 lbs./acre in unfavorable years to about 300 lbs./acre in above average years. This sod is extremely resistant to change and continued frequent and severe grazing or the removal of grazing does not seem to affect the plant composition or structure of the plant community. The biotic integrity of this state is not functional and plant diversity is extremely low. The plant vigor is significantly weakened and replacement capabilities are limited due to the reduced number of coolseason grasses. This sod bound plant community is very resistant to water infiltration. While this sod protects the site itself, off-site areas are affected by excessive runoff that can cause rills and gully erosion. Water flow patterns are obvious in the bare ground areas and pedestalling is apparent along the sod edges. Rill channels are noticeable in the interspaces and down slope. The watershed may or may not be functioning, as runoff may affect adjoining sites. Transitions or pathways leading to other plant communities are as follows: • Grazing land mechanical treatment (chiseling, etc.) and pricklypear cactus control (if needed), followed by prescribed grazing, and possibly seeding of natives will return this plant community to near Historic Climax Plant Community condition.

Figure 9. Plant community growth curve (percent production by month). WY0701, 10-14E upland sites.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			5	25	40	10	5	10	5		

State 5 Salt Tolerant Shrub/ Bare Ground

Community 5.1 Salt Tolerant Shrub/ Bare Ground

This plant community can occur on sites subjected to frequent and severe grazing and on soils influenced by elevated amounts of soluble salts. Salt tolerant shrubs replace Wyoming big sagebrush as the major overstory species while the preferred cool season grasses have been eliminated or greatly reduced. Bare ground and weedy grasses and forbs dominate the understory. This state is dominated by an overstory of salt tolerant shrubs, such as greasewood, birdfoot sagebrush and saltbushes, which can vary widely in their composition and production. The leaves of some of these plants contain high amounts of sodium and other salts, and when shed these soluble salts are transferred to the soils underneath the plants. Consequently, the soil can exhibit wide variations in soluble salts, which can explain the variation in shrub composition. Big sagebrush and rubber rabbitbrush are present but are mostly in small patches. Perennial cool season mid-grasses have been removed leaving mostly patches of blue grama and annuals. Cheatgrass and weedy annual forbs such as halogeton, Russian thistle, and kochia, will occupy the site if a seed source is available. Noxious weeds such as Russian knapweed may also invade the site. Plant diversity is moderate to poor. When compared to the HCPC, grass production has diminished but is off set by the increase in shrub production. The interspaces between plants have expanded leaving the amount of bare ground more prevalent. Surface salts have increased, especially on sites dominated by greasewood and saltbushes. The total annual production (air-dry weight) of this state is about 450 pounds per acre, but it can range from about 250 lbs./acre in unfavorable years to about 550 lbs./acre in above average years. This plant community is resistant to change. These areas are actually more resistant to fire as less fine fuels are available and the bare ground between the shrubs has increased. Continued frequent and severe grazing does not affect the composition or structure of the plant community. Plant diversity is moderate to poor. The biotic integrity of this state is mostly dysfunctional because of the predominant salt tolerant shrub overstory and absence of perennial cool-season grasses. Soil erosion is accelerated because of increased bare ground. Water flow patterns and pedestalling are obvious. Infiltration is reduced and runoff is increased. Rill channels may be noticeable in the interspaces and gullies may be establishing where rills have concentrated down slope. Transitions or pathways leading to other plant communities are as follows: • Prescribed grazing or possibly long-term prescribed grazing, will convert this plant community to the Salt Tolerant Shrub/Rhizomatous Wheatgrass Plant community. Recovery to near Historic Climax Plant Community condition is difficult to impossible due to the resistance of these shrubs to herbicides and other brush management techniques. In addition, the increase in surface salts has had accumulated effects on the soil so most of the herbaceous plants associated with the HCPC are no longer suitable for this site. The most notable exception is the rhizomatous wheatgrasses and bottlebrush squirreltail. Soil remediation to reduce the surface salts is not recommended, as this is mostly ineffective and extremely costly. Seeding more salt-tolerant native grasses and forbs will

improve the productivity of site and plant cover.

Figure 10. Plant community growth curve (percent production by month). WY0701, 10-14E upland sites.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			5	25	40	10	5	10	5		

State 6 Salt Tolerant Shrub/ Rhizomatous Wheatgrasses

Community 6.1 Salt Tolerant Shrub/ Rhizomatous Wheatgrasses

This plant community can occur where the Salt Tolerant/Bare Ground Plant Community is rested and a prescribed grazing management practice is implemented. Salt tolerant shrubs and Wyoming big sagebrush remain a significant component of the plant community but preferred cool season grasses have reestablished. This site is dominated by an overstory of a variety of shrubs, such as Wyoming big sagebrush, rubber rabbitbrush, greasewood, and a variety of saltbushes. Some perennial cool season midgrasses have once again reestablished such as rhizomatous wheatgrasses and bottlebrush squirreltail. Other important grasses include prairie junegrass, Sandberg bluegrass and blue grama. Patches of annuals such as cheatgrass and other weedy annual forbs such as halogeton, Russian thistle, and kochia, will persist on this site. Noxious weeds such as Russian knapweed may also remain if not treated. The interspaces between plants will have diminished in size. When compared with the HCPC or the Perennial Grass/Big Sagebrush Plant Communities, the annual production is somewhat similar, but the plant species are mostly unique. The total annual production (air-dry weight) of this state is about 650 pounds per acre, but it can range from about 400 lbs./acre in unfavorable years to about 800 lbs./acre in above average years. This plant community is mostly resistant to change, but species composition can be altered through long-term overgrazing. The herbaceous component is stable, but does not include most climax species. Plant vigor and replacement capabilities are sufficient. The biotic community is not intact because of the predominant salt tolerant shrub overstory and lack of climax grass species. Plant diversity is moderate. Soils are mostly stable and recent soil loss is minimal. This should not be confused with evidence of remnant erosion. Water flow patterns and litter movement is stable but is still occurring on steeper slopes. Incidence of pedestalling is improving. The watershed may or may not be functioning Transitions or pathways leading to other plant communities are as follows: • Frequent and severe grazing will convert the plant community to the Salt Tolerant Shrub/Bare Ground Plant Community. • Recovery to near Historic Climax Plant Community condition is difficult to impossible due to the resistance of these shrubs to herbicides and other brush management techniques. In addition, the increase in surface salts has had accumulated effects on the soil so most of the herbaceous plants associated with the HCPC are no longer suitable for this site. The most notable exception is the rhizomatous wheatgrasses

and bottlebrush squirreltail. Soil remediation to reduce the surface salts is not recommended, as this is mostly ineffective and extremely costly. Seeding more salt-tolerant grasses and forbs will improve the productivity of site and plant cover, but will not improve the biotic integrity.

Figure 11. Plant community growth curve (percent production by month). WY0701, 10-14E upland sites.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
			5	25	40	10	5	10	5		

Additional community tables

Table 5. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1				314–448	
	Montana wheatgrass	ELAL7	Elymus albicans	314–448	_
	bluebunch wheatgrass	PSSP6	Pseudoroegneria spicata	314–448	_
2				0–90	
	needle and thread	HECO26	Hesperostipa comata	0–90	_
3				45–135	
	western wheatgrass	PASM	Pascopyrum smithii	45–135	_
4				0–90	
	green needlegrass	NAVI4	Nassella viridula	0–90	_
5				0–90	
	Indian ricegrass	ACHY	Achnatherum hymenoides	0–90	_
6				0–90	
	spike fescue	LEKI2	Leucopoa kingii	0–90	_
7				0–90	
	Grass, perennial	2GP	Grass, perennial	0–45	_
	blue grama	BOGR2	Bouteloua gracilis	0–45	_
	threadleaf sedge	CAFI	Carex filifolia	0–45	_
	squirreltail	ELEL5	Elymus elymoides	0–45	_
	prairie Junegrass	KOMA	Koeleria macrantha	0–45	_

	basin wildrye	LECI4	Leymus cinereus	0–45	_
	Sandberg bluegrass	POSE	Poa secunda	0–45	-
Forb					
8				45–135	
	Forb, perennial	2FP	Forb, perennial	0–45	_
	textile onion	ALTE	Allium textile	0–45	_
	small-leaf pussytoes	ANPA4	Antennaria parvifolia	0–45	_
	rosy pussytoes	ANRO2	Antennaria rosea	0–45	_
	prairie sagewort	ARFR4	Artemisia frigida	0–45	_
	Missouri milkvetch	ASMI10	Astragalus missouriensis	0–45	_
	wavyleaf Indian paintbrush	CAAPM	Castilleja applegatei ssp. martinii	0–45	_
	bastard toadflax	соим	Comandra umbellata	0–45	_
	tapertip hawksbeard	CRAC2	Crepis acuminata	0–45	_
	little larkspur	DEBI	Delphinium bicolor	0–45	_
	threadleaf fleabane	ERFI2	Erigeron filifolius	0–45	_
	parsnipflower buckwheat	ERHE2	Eriogonum heracleoides	0–45	-
	bigseed biscuitroot	LOMA3	Lomatium macrocarpum	0–45	-
	leafy wildparsley	MUDI	Musineon divaricatum	0–45	_
	white locoweed	OXSES2	Oxytropis sericea var. speciosa	0–45	-
	beardtongue	PENST	Penstemon	0–45	_
	spiny phlox	РННО	Phlox hoodii	0–45	_
	scarlet globemallow	SPCO	Sphaeralcea coccinea	0–45	
	stemless mock goldenweed	STAC	Stenotus acaulis	0–45	_
	smooth woodyaster	XYGL	Xylorhiza glabriuscula	0–45	_
	meadow deathcamas	ZIVE	Zigadenus venenosus	0–45	_
Shruk	o/Vine				
9				45–135	
	big sagebrush	ARTR2	Artemisia tridentata	45–135	

10				0–45	
	antelope bitterbrush	PUTR2	Purshia tridentata	0–45	-
11				0–45	
	rubber rabbitbrush	ERNA10	Ericameria nauseosa	0–45	-
12				0–45	
	winterfat	KRASC	Krascheninnikovia	0–45	-
13				0–45	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	0–45	

Animal community

Animal Community – Wildlife Interpretations

Bluebunch Wheatgrass/Rhizomatous Wheatgrasses (HCPC): The predominance of grasses in this plant community favors grazers and mixed-feeders, such as bison, elk, and antelope. Suitable thermal and escape cover for deer may be limited due to the low quantities of woody plants. However, topographical variations could provide some escape cover. When found adjacent to sagebrush dominated states, this plant community may provide brood rearing/foraging areas for sage grouse, as well as lek sites. Other birds that would frequent this plant community include western meadowlarks, horned larks, and golden eagles. Many grassland obligate small mammals would occur here.

Perennial Grass/Big Sagebrush Plant Community: The combination of an overstory of sagebrush and an understory of grasses and forbs provide a very diverse plant community for wildlife. The crowns of sagebrush tend to break up hard crusted snow on winter ranges, so mule deer and antelope may use this state for foraging and cover year-round, as would cottontail and jack rabbits. It provides important winter, nesting, brood-rearing, and foraging habitat for sage grouse. Brewer's sparrows' nest in big sagebrush plants and hosts of other nesting birds utilize stands in the 20-30% cover range.

Big Sagebrush/Bare Ground Plant Community: This plant community can provide important winter foraging for elk, mule deer and antelope, as sagebrush can approach 15% protein and 40-60% digestibility during that time. This community provides excellent escape and thermal cover for large ungulates, as well as nesting habitat for sage grouse.

Blue Grama Sod Plant Community: These communities provide limited foraging for antelope and other grazers. They may be used as a foraging site by sage grouse if proximal to woody cover and if the Historic Climax Plant Community or the Perennial Grass/ Big Sagebrush Plant Community is limited. Generally, these are not target plant communities for wildlife habitat management.

Salt Tolerant Shrub/Bare Ground Plant Community: This plant community exhibits a low level of plant species diversity due to the accumulation of salts near the soil surface. It may provide some thermal and escape cover for deer and antelope if no other woody

community is nearby, but in most cases, it is not a desirable plant community to select as a wildlife habitat management objective.

Salt Tolerant Shrub/Rhizomatous Wheatgrass Plant Community: The combination of an overstory of sagebrush and an understory of grasses and forbs provide a diverse plant community for wildlife. The crowns of these shrubs tend to break up hard crusted snow on winter ranges, so mule deer and antelope may use this state for foraging and cover year-round, as would cottontail and jack rabbits. It provides important winter nesting, brood-rearing, and foraging habitat for sage grouse and other upland birds. Brewer's sparrows' nest in big sagebrush plants and hosts of other nesting birds utilize stands in the 20-30% cover range.

Animal Community - Grazing Interpretations

The following table lists suggested stocking rates for cattle under continuous season-long grazing under normal growing conditions. These are conservative estimates that should be used only as guidelines in the initial stages of the conservation planning process. Often, the current plant composition does not entirely match any particular plant community (as described in this ecological site description). Because of this, a field visit is recommended, in all cases, to document plant composition and production. More precise carrying capacity estimates should eventually be calculated using this information along with animal preference data, particularly when grazers other than cattle are involved. Under more intensive grazing management, improved harvest efficiencies can result in an increased carrying capacity. If distribution problems occur, stocking rates must be reduced to maintain plant health and vigor.

Plant Community Production Carrying Capacity*
(lb./ac) (AUM/ac)
Bluebunch Wheatgrass/ Rhizomatous Wheatgrasses 500-1100 .40
Perennial Grass/Big Sagebrush 400-900 .30
Big Sagebrush/Bare Ground 300-700 .20
Blue Grama Sod 100-300 .10
Salt Tolerant Shrub/Bare Ground 250-550 .13
Salt Tolerant Shrub/Rhizomatous Wheatgrasses 400-800 .22

* - Continuous, season-long grazing by cattle under average growing conditions.

Grazing by domestic livestock is one of the major income-producing industries in the area. Rangeland in this area may provide yearlong forage for cattle, sheep, or horses. During the dormant period, the forage for livestock use needs to be supplemented with protein because the quality does not meet minimum livestock requirements.

Hydrological functions

Water is the principal factor limiting forage production on this site. This site is dominated

by soils in hydrologic group B and C, with localized areas in hydrologic group D. Infiltration ranges from moderately slow to moderate. Runoff potential for this site varies from low to moderate depending on soil hydrologic group and ground cover. In many cases, areas with greater than 75% ground cover have the greatest potential for high infiltration and lower runoff. An example of an exception would be where short-grasses form a strong sod and dominate the site. Areas where ground cover is less than 50% have the greatest potential to have reduced infiltration and higher runoff (refer to Part 630, NRCS National Engineering Handbook for detailed hydrology information).

Rills and gullies should not typically be present. Water flow patterns should be barely distinguishable if at all present. Pedestals are only slightly present in association with bunchgrasses. Litter typically falls in place, and signs of movement are not common. Chemical and physical crusts are rare to non-existent. Cryptogamic crusts are present, but only cover 1-2% of the soil surface.

Recreational uses

This site provides hunting opportunities for upland game species. The wide varieties of plants which bloom from spring until fall have an esthetic value that appeals to visitors.

Wood products

No appreciable wood products are present on the site.

Other products

none noted

Inventory data references

Information presented here has been derived from NRCS inventory data. Field observations from range trained personnel were also used. Those involved in developing this site include: Chris Krassin, Range Management Specialist, NRCS and Everet Bainter, Range Management Specialist. Other sources used as references include USDA NRCS Water and Climate Center, USDA NRCS National Range and Pasture Handbook, USDI and USDA Interpreting Indicators of Rangeland Health Version 3, and USDA NRCS Soil Surveys from various counties.

Contributors

D. Tranas

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to

determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Ray Gullion, E. Bainter
Contact for lead author	ray.gullion@wy.usda.gov or 307-347-2456
Date	05/01/2008
Approved by	E. Bainter
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Inc	licators
1.	Number and extent of rills: Rare to nonexistent. Where present, short and widely spaced.
2.	Presence of water flow patterns: Barely observable.
3.	Number and height of erosional pedestals or terracettes: Rare to nonexistent.
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): Bare ground can range from 10-30%.
5.	Number of gullies and erosion associated with gullies: Active gullies should not be present.
6.	Extent of wind scoured, blowouts and/or depositional areas: Rare to nonexistent.

7. Amount of litter movement (describe size and distance expected to travel): Herbaceous litter expected to move only in small amounts (to leeward side of shrubs). Large woody debris

	from sagebrush will show no movement.
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values): Soil Stability Index ratings range from 1 (interspaces) to 6 (under plant canopy), but average values should be 3.0 or greater.
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Soil data is limited for this site. Described A-horizons vary from 1-12 inches (3-30 cm) with OM of 1 to 2%.
10.	Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Plant community consists of 55-75% grasses, 15% forbs, and 10-30% shrubs. Evenly distributed plant canopy (50-75%) and litter plus moderate to moderately rapid infiltration rates result in minimal runoff. Basal cover is typically less than 5% for this site and does very little to effect runoff on this site.
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
	Dominant: Mid-size, cool season bunchgrasses>> perennial shrubs=cool season rhizomatous grasses>>perennial forbs>short cool season bunchgrasses
	Sub-dominant:
	Other:
	Additional:
13.	Amount of plant mortality and decadence (include which functional groups are

	shrub component.
14.	Average percent litter cover (%) and depth (in): Litter ranges from 5-30% of total canopy measurement with total litter (including beneath the plant canopy) from 30-70% expected. Herbaceous litter depth typically ranges from 3-10mm. Woody litter can be up to a couple inches (4-6 cm).
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): English: 500-1100 lb/ac (800 lb/ac average); Metric 560-1232 kg/ha (896 kg/ha average).
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Bare ground greater than 50% is the most common indicator of a threshold being crossed. Blue grama, Sandberg bluegrass, big sagebrush, buckwheat, and phlox are common increasers. Annual weeds such as kochia, mustards, lambsquarter, and Russian thistle are common invasive species in disturbed sites.
17.	Perennial plant reproductive capability: All species are capable of reproducing, except in drought years.

expected to show mortality or decadence): Minimal decadence, typically associated with