

Ecological site R010XY117OR Mountain Swale 12-16 PZ

Last updated: 4/10/2025 Accessed: 05/21/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Associated sites

R010XC025OR	SR Sandy 9-12 PZ
	12-16" Mountain Upland Group - Gravelly Fan 12-16" PZ, Loamy Bottom

Similar sites

R010XC025OR	SR Sandy 9-12 PZ
	Gravelly Fan 12-16" PZ (coarser soil, deeper subsurface flows)/Loamy Bottom
	(perennial to near perennial subsurface flows)

Table 1. Dominant plant species

Tree	Not specified			
Shrub	(1) Artemisia tridentata ssp. vaseyana			
Herbaceous	(1) Leymus cinereus (2) Festuca idahoensis			

Physiographic features

This site occurs adjacent to and on the floodplains of ephemeral drainages. It is at the upper end of drainages occuping broad to narrow swale areas. Slopes range from 2 to 12 percent. Elevations range from 3000 to 5700 feet.

Table 2. Representative physiographic features

Landforms	(1) Flood plain(2) Drainageway(3) Swale	
Elevation	914–1,737 m	
Slope	2–12%	
Water table depth	152 cm	
Aspect	Aspect is not a significant factor	

Climatic features

The annual precipitation ranges from 12 to 16 inches, most of which occurs in the form of snow during the months of November through March. Ephemeral subsurface moisture flow augments the precipitation. Localized convection storms occasionally occur during the summer. The soil temperature regime is frigid with a mean annual air temperature of 45 degrees F. Temperature extremes range from 90 to -30 degrees F. The frost-free period ranges from 30 to 90 days. The optimum period for plant growth is from April through June.

Table 3. Representative climatic features

Frost-free period (average)	90 days
Freeze-free period (average)	
Precipitation total (average)	406 mm

Influencing water features

Soil features

The soils of this site are recent, deep to very deep and well-drained. Typically the surface layer is a silt loam about 10 inches thick. The subsoil is a silty clay loam over 40 inches thick. The substratum varies from alluvium to bedrock. Gravel content in the pedon ranges from 0 to 30 percent. Permeability is moderate. The available water holding capacity (AWC) is about 8 to 10 inches for the profile. Seasonal subsurface flows from adjacent slopes augment the available water. The potential for erosion is moderate.

Table 4. Representative soil features

Surface texture	(1) Silt loam
Family particle size	(1) Clayey
Drainage class	Well drained

Permeability class	Moderate
Soil depth	127 cm
Surface fragment cover <=3"	0–30%
Available water capacity (0-101.6cm)	20.32–25.4 cm

Ecological dynamics

Range in Characteristics:

The amount of basin wildrye is dependent on the extent and duration of lateral subsurface water flows. Basin wildrye increases and Idaho fescue decreases on swales receiving subsurface flows late into the growing season. This would be on swales with large drainage areas. Conversely, Idaho fescue would increase on swales with limited drainage areas. This would typically be at the upper ends of watersheds where drainage area is limited. Production follows a similar pattern increasing on swales with large drainage areas. As a site susceptible to fire, the amount of basin big sagebrush is influenced by fire frequency.

Response to Disturbance:

If the condition of the site deteriorates as a result of overgrazing, basin wildrye and Idaho fescue decrease. Bluegrasses invade and basin big sagebrush increase. With further deterioration, annuals invade and useable forage production decreases. Streambanks become unstable from loss of vegetation and channels degrade, becoming deeper and wider in the process. Subsurface flows are affected. Peak discharges increase, the water table drops and storage of water for late season use is reduced. Erosion from concentrated flows reduces the site productivity and contributes to downstream sedimentation.

State and transition model

GENERAL MODEL FOR COOL-SEASON BUNCHGRASS RANGELANDS

State 1 Reference

Community 1.1 Reference Plant Community

The potential native plant community is dominated by basin wildrye and Idaho fescue. Mountain and basin big sagebrush, wax currant, bluebunch wheatgrass, and Thurber needlegrass are common. Sedges, bluegrasses, western wheatgrass, and a variety of forbs are present. Vegetative composition of the community is approximately 85 percent grasses, 5 percent forbs, and 10 percent shrubs. Approximate ground cover is 70-80 percent (basal and crown).

Table 5. Annual production by plant type

Plant Type	Low (Kg/Hectare)	Representative Value (Kg/Hectare)	High (Kg/Hectare)
Grass/Grasslike	1961	2677	3391
Shrub/Vine	196	407	616
Forb	84	155	224
Total	2241	3239	4231

Figure 2. Plant community growth curve (percent production by month). OR4451, B10 SR Fan and Swale, 9-16 pz . SR Fan and Swale, 9-16 pz RPC Growth Curve.

Additional community tables

Table 6. Community 1.1 plant community composi	tion
--	------

Group	Common Name	Symbol	Scientific Name	Annual Production (Kg/Hectare)	Foliar Cover (%)
Grass	/Grasslike				
1	Perennial, deep-r	ooted, do	miant	1681–2522	
	basin wildrye	LECI4	Leymus cinereus	1121–1681	-
	basin wildrye	LECI4	Leymus cinereus	1121–1681	-
	Idaho fescue	FEID	Festuca idahoensis	560–841	_
	Idaho fescue	FEID	Festuca idahoensis	560–841	-
2	Perennial, deep-rooted, sub-domiant			168–448	
	Thurber's needlegrass	ACTH7	Achnatherum thurberianum	56–140	_
	bluebunch wheatgrass	PSSP6	Pseudoroegneria spicata	56–140	_
	sedge	CAREX	Carex	28–84	_
	western wheatgrass	PASM	Pascopyrum smithii	28–84	_

4	Perennial, shallow-rooted, sub-dominant			28–84	
	bluegrass	POA	Poa	28–84	_
5	Other perennial g	jrasses, al	84–336		
	western needlegrass	ACOC3	Achnatherum occidentale	0–67	-
	squirreltail	ELEL5	Elymus elymoides	0–67	_
	needle and thread	HECO26	Hesperostipa comata	0–67	_
	prairie Junegrass	KOMA	Koeleria macrantha	0–67	_
	Sandberg bluegrass	POSE	Poa secunda	0–67	_
Forb					
7	Perennial, all, do	minant		56–112	
	buckwheat	ERIOG	Eriogonum	28–56	_
	lupine	LUPIN	Lupinus	28–56	_
9	Other perennial f	orbs, all		28–112	
	common yarrow	ACMI2	Achillea millefolium	0–9	_
	white sagebrush	ARLU	Artemisia ludoviciana	0–9	_
	milkvetch	ASTRA	Astragalus	0–9	_
	tapertip hawksbeard	CRAC2	Crepis acuminata	0–9	_
	fleabane	ERIGE2	Erigeron	0–9	_
	stoneseed	LITHO3	Lithospermum	0–9	_
	desertparsley	LOMAT	Lomatium	0–9	_
	bluebells	MERTE	Mertensia	0–9	_
	phlox	PHLOX	Phlox	0–9	_
	cinquefoil	POTEN	Potentilla	0–9	_
	buttercup	RANUN	Ranunculus	0–9	_
	deathcamas	ZIGAD	Zigadenus	0–9	_
Shru	ıb/Vine	-			
11	Perennial, evergr	Perennial, evergreen, dominant			
	mountain big sagebrush	ARTRV	Artemisia tridentata ssp. vaseyana	84–224	_
12	Perennial, evergr	een, sub-c	28–84		
	basin big	ARTRT	Artemisia tridentata ssp. tridentata	28–84	_

14	Perennial, deciduous, dominant			28–84	
	wax currant	RICE	Ribes cereum	28–84	-
15	Other perennial shrubs, all			56–224	
	yellow rabbitbrush	CHVI8	Chrysothamnus viscidiflorus	0–56	_
	golden currant	RIAU	Ribes aureum	0–56	_
	common snowberry	SYAL	Symphoricarpos albus	0–56	-
	Saskatoon serviceberry	AMAL2	Amelanchier alnifolia	0–56	_

Animal community

Livstock Grazing:

This site is suited to use by cattle, sheep, and horses in late spring, summer, and fall under a planned grazing system. Limitations in the spring are saturated wet soils and unstable banks. Use should be postponed until the soils are firm enough to prevent trampling damage and soil compaction, yet while soil moisture is adequate to allow the completion of the plant growth cycle. Improvement and/or maintenance of herbaceous bank protection should be considered during all seasons, particularly going into the winter for spring high flow periods.

Native Wildlife Associated with the Potential Climax Community:

Deer Antelope Elk Hawks Songbirds Rodents

This site will offer food and cover for mule deer, elk, antelope, rodents, and a variety of birds. It is an important wintering area for mule deer, elk, and antelope.

Hydrological functions

The soils are in hydrologic group B. The soils of this site have moderately low runoff potential. This site is potentially subject to three high flow periods: low elevation snowmelt, high elevation snowmelt, and summer cloudburst flow.

Other information

The soils of this site have excellent water holding capacities providing late season water

for plant growth and slow water release to streams. When incised channels are present, rehabilitation will markedly improve production and restore good hydrologic characteristics. On altered sites the reintroduction of desirable deep rooted plants may be needed to fully restore the site potential.

Contributors

BLM/SCS Team - Burns Cici Brooks M. Parks (OSU)

Approval

Kirt Walstad, 4/10/2025

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	Jeff Repp
Contact for lead author	State Rangeland Management Specialist for NRCS Oregon
Date	11/21/2016
Approved by	Kirt Walstad
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills: None, moderate sheet & rill erosion hazard.
- 2. **Presence of water flow patterns:** None, except following extremely high intensity storms when short (less than 1 meter) flow patterns may appear on steeper slopes. Minimal

evidence of past or current soil deposition or erosion.

- 3. Number and height of erosional pedestals or terracettes: None.
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground): 0 5% bare ground.
- 5. Number of gullies and erosion associated with gullies: None.
- 6. Extent of wind scoured, blowouts and/or depositional areas: None. Wind erosion hazard is moderate.
- 7. Amount of litter movement (describe size and distance expected to travel): Litter size is Small/Fine. Litter movement is limited, minimal, and short, associated with water flow patterns following extremely high intensity storms. Litter also may be moved during intense wind storms.
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values): Site is Moderately resistant to erosion. Stability class (Herrick et al. 2001) anticipated to be 3-6 at surface under perennial vegetation. Stability class at surface in the interspaces is anticipated to be less than or equal to that under perennial vegetation.
- Soil surface structure and SOM content (include type of structure and A-horizon color and thickness): Surface layer structure is moderate very fine granular to moderate thin platy. The A horizon has a dry color of 4 - 5 and is 3 - 15 inches thick. The Soil Organic Matter (SOM) content is low (0.2 to 2.0%).
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff: Plant foliar cover and basal

cover with small gaps between plants should reduce raindrop impact and slow overland flow, providing increased time for infiltration to occur. High herbaceous vegetation on this site will retain more water from precipitation. High ground cover (70-80%) and gentle slopes (2-12%) limit rainfall impact and overland flow.

- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site): None.
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant: Deep rooted bunchgrasses

Sub-dominant: Other perennial grasses > evergreen shrubs

Other: Perennial forbs = other shrubs

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence): Grasses will nearly always show some mortality and decadence. Normal decadence and mortality expected on other plants.
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production): Low 2000 lbs/acre, Representative Value 2500 lbs/acre, High 3000 lbs/acre
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment

and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site: Western Juniper readily invades the site. Cheatgrass and Medusahead invade sites that have lost deep rooted perennial grass functional groups.

17. **Perennial plant reproductive capability:** All species should be capable of reproducing annually.