
Natural Resources
Conservation Service
Ecological site R028AY037NV
VALLEY WASH
Last updated: 6/12/2025
Accessed: 10/22/2025
General information
Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.
MLRA notes
Major Land Resource Area (MLRA): 028A–Ancient Lake Bonneville
MLRA 28A occurs in Utah (82%), Nevada (16%), and Idaho (2%). It makes up about 36,775 square miles. A large area west and southwest of Great Salt Lake is a salty playa. This area is the farthest eastern extent of the Great Basin Section of the Basin and Range Province of the Intermontane Plateaus. It is an area of nearly level basins between widely separated mountain ranges trending north to south. The basins are bordered by long, gently sloping alluvial fans. The mountains are uplifted fault blocks with steep side slopes. They are not well dissected because of low rainfall in the MLRA. Most of the valleys are closed basins containing sinks or playa lakes. Elevation ranges from 3,950 to 6,560 ft. in the basins and from 6,560 to 11,150 ft. in the mountains. Most of this area has alluvial valley fill and playa lakebed deposits at the surface. Great Salt Lake is all that remains of glacial Lake Bonneville. A level line on some mountain slopes indicates the former extent of this glacial lake. Most of the mountains in the interior of this area consist of tilted blocks of marine sediments from Cambrian to Mississippian age. Scattered outcrops of Tertiary continental sediments and volcanic rocks are throughout the area. The average annual precipitation is 5 to 12 ins. in the valleys and is as much as 49 ins. in the mountains. Most of the rainfall occurs as high-intensity, convective thunderstorms during the growing season. The driest period is from midsummer to early autumn. Precipitation in winter typically occurs as snow. The average annual temperature is 39 to 53 °F. The freeze-free period averages 165 days and ranges from 110 to 215 days, decreasing in length with elevation. The dominant soil orders in this MLRA are Aridisols, Entisols, and Mollisols. The soils in the area dominantly have a mesic or frigid soil temperature regime, an aridic or xeric soil moisture regime, and mixed mineralogy. They generally are well drained, loamy or loamy-skeletal, and very deep.
Ecological site concept
This site occurs on inset fans of lower fan piedmonts along the margins of ephemeral stream channels. Slopes range from 2 to 15 percent, but slope gradients of 2 to 4 percent are most typical. Elevations are 4500 to 5500 feet.
Average annual precipitation is 5 to 8 inches. Mean annual air temperature is 45 to 50 degrees F. The average growing season is about 100 to 120 days.
The soils of this site are very deep and somewhat excessively drained. These soils have medium runoff and moderate permeability. The soils are moderately to strongly alkaline and calcareous throughout. The soil profile consists of extremely gravelly loamy fine sands and extremely gravelly coarse sands and the soil surface is covered with about 50 percent pebbles. Rock fragments in the soil profile reduce the potential soil moisture holding capacity.
The reference state is variable, however, spiny hopsage, fourwing saltbush, rabbitbrush, Nevada ephedra and Indian ricegrass are the more important species.
Production ranges from 400 to 600 pounds per acre.
Associated sites
R028AY002NV |
COARSE SILTY 5-8 P.Z. |
---|---|
R028AY012NV |
LOAMY 5-8 P.Z. |
R028AY018NV |
COARSE GRAVELLY LOAM 5-8 P.Z. |
Similar sites
R028AY038NV |
UPLAND WASH Upland Wash. ARTR2-PRFA dominant shrubs; stable plant community. |
---|---|
R028AY028NV |
DROUGHTY LOAM 8-10 P.Z. Droughty Loam 8-10" PZ. ARTRW-GRSP codominant shrubs; stable plant community. |
R028AY031NV |
LOAMY FAN 8-10 P.Z. Loamy Fan 8-10" PZ. ARTR2 dominant shrub; LECI4-ELLAL codominant grasses; stable plant community. |
R028AY032NV |
DROUGHTY SODIC LOAM Droughty Sodic Loam. SAVE4-GRSP codominant shrubs; stable plant community. |
Table 1. Dominant plant species
Tree |
Not specified |
---|---|
Shrub |
(1) Atriplex canescens |
Herbaceous |
(1) Achnatherum hymenoides |
Physiographic features
This site occurs on inset fans of lower fan piedmonts along the margins of ephemeral stream channels. Slopes range from 2 to 15 percent, but slope gradients of 2 to 4 percent are most typical. Elevations are 4500 to 5500 feet.
Table 2. Representative physiographic features
Landforms |
(1)
Inset fan
|
---|---|
Elevation | 4,500 – 5,500 ft |
Slope | 2 – 15% |
Climatic features
Nevada’s climate is predominantly arid, with large daily ranges of temperature, infrequent severe storms, heavy snowfall in the higher mountains, and great location variations with elevation. Three basic geographical factors largely influence Nevada’s climate: continentality, latitude, and elevation. Continentality is the most important factor. The strong continental effect is expressed in the form of both dryness and large temperature variations. Nevada lies on the eastern, lee side of the Sierra Nevada Range, a massive mountain barrier that markedly influences the climate of the State. The prevailing winds are from the west, and as the warm moist air from the Pacific Ocean ascend the western slopes of the Sierra Range, the air cools, condensation occurs and most of the moisture falls as precipitation. As the air descends the eastern slope, it is warmed by compression, and very little precipitation occurs. The effects of this mountain barrier are felt not only in the West but throughout the state, with the result that the lowlands of Nevada are largely desert or steppes. The temperature regime is also affected by the blocking of the inland-moving maritime air. Nevada sheltered from maritime winds, has a continental climate with well-developed seasons and the terrain responds quickly to changes in solar heating.
Nevada lies within the mid-latitude belt of prevailing westerly winds which occur most of the year. These winds bring frequent changes in weather during the late fall, winter and spring months, when most of the precipitation occurs. To the south of the mid-latitude westerlies, lies a zone of high pressure in subtropical latitudes, with a center over the Pacific Ocean. In the summer, this high-pressure belt shifts northward over the latitudes of Nevada, blocking storms from the ocean. The resulting weather is mostly clear and dry during the summer and early fall, with scattered thundershowers. The eastern portion of the state receives significant summer thunderstorms generated from monsoonal moisture pushed up from the Gulf of California, known as the North American monsoon. The monsoon system peaks in August and by October the monsoon high over the Western U.S. begins to weaken and the precipitation retreats southward towards the tropics (NOAA 2004).
Average annual precipitation is 5 to 8 inches. Mean annual air temperature is 45 to 50 degrees F. The average growing season is about 100 to 120 days.
Mean annual precipitation at MONTELLO 1 SE, NEVADA (265352) is 6.95 inches.
Monthly mean precipitation is:
January 0.61; February 0.46; March 0.43;
April 0.61; May 0.91; June 0.83; July 0.56;
August 0.52; September 0.51; October 0.51;
November 0.53; December 0.48.
Table 3. Representative climatic features
Frost-free period (average) | |
---|---|
Freeze-free period (average) | 110 days |
Precipitation total (average) | 7 in |
Figure 1. Monthly average minimum and maximum temperature
Figure 2. Annual precipitation pattern
Figure 3. Annual average temperature pattern
Influencing water features
This site is adjacent to perennial stream and subject to periodic flood flows associated with intense summer convection storms.
Soil features
The soils of this site are very deep and somewhat excessively drained. These soils have medium runoff and moderate permeability. The soils are moderately to strongly alkaline and calcareous throughout. The soil profile consists of extremely gravelly loamy fine sands and extremely gravelly coarse sands and the soil surface is covered with about 50 percent pebbles. Rock fragments in the soil profile reduce the potential soil moisture holding capacity. These soils are subject to periodic flood flows associated with intense summer convection storms.
Ecological dynamics
This site is frequently disturbed by intense, natural, flood flows that can completely destroy all vegetation. The structure and composition of this plant community is very much dependent upon the time interval since the last devastating overflow event. Species likely to invade this site are annuals such as cheatgrass and mustards.
Ratings of ecological condition and determinations of similarity index are not applicable to this site due to the inherent instability of the plant community.
Fire Ecology:
The mean fire return interval for salt-desert shrub communities ranges from 35 to 100 years. Shadscale communities are usually unaffected by fire because of low fuel loads, although a year of exceptionally heavy winter rains can generate fuels by producing a heavy stand of annual forbs and grasses. Salt-desert shrub, desert shrub, and desert grassland communities with fourwing saltbush historically experienced infrequent, stand-replacement fires. Fire top-kills or kills fourwing saltbush, depending upon ecotype. Fourwing saltbush may sprout after top-kill. Fourwing saltbush probably establishes primarily from seed after fire, with some populations also regenerating vegetatively. Spiny hopsage is considered to be somewhat fire tolerant and often survives fires that kill sagebrush. Mature spiny hopsage generally sprout after being burned. Spiny hopsage is reported to be least susceptible to fire during summer dormancy. Rubber rabbitbrush is often top-killed by fire. Rubber rabbitbrush is a fire-adapted species that is typically unharmed or enhanced by fire. Recovery time is often rapid to very rapid. Rubber rabbitbrush is often one of the first species to colonize burned areas by sprouting or from off-site seed. Nevada ephedra generally sprouts after fire damages aboveground vegetation. Underground regenerative structures commonly survive when aboveground vegetation is consumed by fire. However, severe fires may kill shallowly buried regenerative structures. Shadscale is fire intolerant and it does not readily recover from fire, except for establishment through seed. Fall prescribed burning killed 100% of shadscale on study plots in a basin big sagebrush community. Spring burning left a few surviving shadscale plants but greatly reduced shadscale density and frequency. Indian ricegrass can be killed by fire, depending on severity and season of burn. Indian ricegrass reestablishes on burned sites through seed dispersed from adjacent unburned areas. Bottlebrush squirreltail's small size, coarse stems, and sparse leafy material aid in its tolerance of fire. Postfire regeneration occurs from surviving root crowns and from on- and off-site seed sources. Frequency of disturbance greatly influences postfire response of bottlebrush squirreltail. Undisturbed plants within a 6 to 9 year age class generally contain large amounts of dead material, increasing bottlebrush squirreltail's susceptibility to fire. Galleta is a rhizomatous perennial which can resprout after top-kill by fire.
State and transition model
More interactive model formats are also available.
View Interactive Models
Click on state and transition labels to scroll to the respective text
Ecosystem states
State 1 submodel, plant communities
State 2 submodel, plant communities
State 3 submodel, plant communities
State 4 submodel, plant communities
State 5 submodel, plant communities
State 1
Reference State
The Reference State 1.0 is a representative of the natural range of variability under pristine conditions. The reference state has 3 general community phases; a shrub-grass dominant phase, a perennial grass dominant phase and a shrub dominant phase. State dynamics are maintained by interactions between climatic patterns and disturbance regimes. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Plant community phase changes are primarily driven by fire, periodic drought and/or insect or disease attack.
Community 1.1
Community Phase
This community is dominated by low sagebrush, bluebunch wheatgrass and needlegrasses. Forbs and other grasses make up smaller components. Utah juniper and singleleaf pinyon are described in the site concept and may or may not be present in low densities.Potential vegetative composition is about 15% grasses, 10% forbs and 75% shrubs. Approximate ground cover (basal and crown) is 10 to 20 percent.
Figure 4. Annual production by plant type (representative values) or group (midpoint values)
Table 4. Annual production by plant type
Plant type | Low (lb/acre) |
Representative value (lb/acre) |
High (lb/acre) |
---|---|---|---|
Shrub/Vine | 300 | 375 | 450 |
Grass/Grasslike | 60 | 75 | 90 |
Forb | 40 | 50 | 60 |
Total | 400 | 500 | 600 |
Community 1.2
Community Phase
This community phase is characteristic of a post-disturbance, early/mid-seral community. Bluebunch wheatgrass, needlegrasses and other perennial bunchgrasses dominate. Depending on fire severity patches of intact sagebrush may remain. Rabbitbrush and other sprouting shrubs may be present. Perennial forbs may be a significant component for a number of years following fire and may dominate in the higher elevation sites.
Community 1.3
Community Phase
Sagebrush increases in the absence of disturbance. Decadent sagebrush dominates the overstory and the deep-rooted perennial bunchgrasses in the understory are reduced either from competition with shrubs and/or from herbivory.
Pathway a
Community 1.1 to 1.2
Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires will typically be low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring may be more severe and reduce sagebrush cover to trace amounts.
Pathway b
Community 1.1 to 1.3
Time and lack of disturbance such as fire allows for sagebrush to increase and become decadent. Chronic drought, herbivory, or combinations of these will cause a decline in perennial bunchgrasses and fine fuels leading to a reduced fire frequency and allowing sagebrush to dominate the site.
Pathway a
Community 1.2 to 1.1
Time and lack of disturbance will allow sagebrush to establish.
Pathway a
Community 1.3 to 1.1
A low severity fire, herbivory or combinations will reduce the sagebrush overstory and create a sagebrush/grass mosaic.
Pathway b
Community 1.3 to 1.2
Fire will decrease or eliminate the overstory of sagebrush and allow for the perennial bunchgrasses to dominate the site. Fires may be high severity in this community phase due to the dominance of sagebrush resulting in removal of overstory shrub community.
State 2
Current Potential State
This state is similar to the Reference State 1.0 with three similar community phases. Ecological function has not changed, however the resiliency of the state has been reduced by the presence of invasive weeds. Non-natives may increase in abundance but will not become dominant within this State. These non-natives can be highly flammable and can promote fire where historically fire had been infrequent. Negative feedbacks enhance ecosystem resilience and contribute to the stability of the state. These feedbacks include the presence of all structural and functional groups, low fine fuel loads, and retention of organic matter and nutrients. Positive feedbacks decrease ecosystem resilience and stability of the state. These include the non-natives’ high seed output, persistent seed bank, rapid growth rate, ability to cross pollinate, and adaptations for seed dispersal.
Community 2.1
Community Phase
This community phase is similar to the Reference State Community Phase 1.1, with the presence of non-native species in trace amounts. Sagebrush, bluebunch wheatgrass and needlegrasses dominate the site. Forbs and other shrubs and grasses make up smaller components of this site. Utah juniper and singleleaf pinyon are described in the site concept and may or may not be present in low densities.
Community 2.2
Community Phase
This community phase is characteristic of a post-disturbance, early to mid-seral community where annual non-native species are present. Sagebrush is present in trace amounts; perennial bunchgrasses dominate the site. Depending on fire severity or intensity of Aroga moth infestations, patches of intact sagebrush may remain. Rabbitbrush may be sprouting or dominant in the community. Perennial forbs may be a significant component for a number of years and may dominate in the higher elevation sites. Annual non-native species are stable or increasing within the community.
Community 2.3
Community Phase (at risk)
This community is at risk of crossing a threshold to another state. Sagebrush dominates the overstory and perennial bunchgrasses in the understory are reduced, either from competition with shrubs or from inappropriate grazing, or from both. Rabbitbrush may be a significant component. Sandberg bluegrass may increase and become co-dominate with deep rooted bunchgrasses. Utah juniper and/or singleleaf pinyon may be present and without management will likely increase. Annual non-native species may be stable or increasing due to lack of competition with perennial bunchgrasses. This site is susceptible to further degradation from grazing, drought, and fire.
Pathway a
Community 2.1 to 2.2
Fire reduces the shrub overstory and allows for perennial bunchgrasses to dominate the site. Fires are typically low severity resulting in a mosaic pattern due to low fuel loads. A fire following an unusually wet spring or a change in management favoring an increase in fine fuels may be more severe and reduce sagebrush cover to trace amounts. Annual non-native species are likely to increase after fire.
Pathway b
Community 2.1 to 2.3
Time and lack of disturbance allows for sagebrush to increase and become decadent. Chronic drought reduces fine fuels and leads to a reduced fire frequency, allowing sagebrush to dominate the site. Inappropriate grazing management reduces the perennial bunchgrass understory; conversely Sandberg bluegrass and muttongrass may increase in the understory depending on grazing management.
Pathway a
Community 2.2 to 2.1
Time and lack of disturbance and/or grazing management that favors the establishment and growth of sagebrush allows the shrub component to recover. The establishment of low sagebrush can take many years.
Pathway a
Community 2.3 to 2.1
A change in grazing management that reduces shrubs will allow for the perennial bunchgrasses in the understory to increase. Heavy late-fall or winter grazing may cause mechanical damage and subsequent death to sagebrush, facilitating an increase in the herbaceous understory. Brush treatments with minimal soil disturbance will also decrease sagebrush and release the perennial understory. A low severity fire would decrease the overstory of sagebrush and allow for the understory perennial grasses to increase. Due to low fuel loads in this State, fires will likely be small creating a mosaic pattern. Annual non-native species are present and may increase in the community.
Pathway b
Community 2.3 to 2.2
Fire eliminates/reduces the overstory of sagebrush and allows for the understory perennial grasses to increase. Fires may be high severity in this community phase due to the dominance of sagebrush resulting in removal of overstory shrub community. Annual non-native species respond well to fire and may increase post burn.
State 3
Shrub State
This state is characterized by low sagebrush or a sprouting shrub overstory with a Sandberg bluegrass understory. The site has crossed a biotic threshold and site processes are being controlled by shrubs. Sagebrush cover exceeds site concept and may be decadent, reflecting stand maturity and lack of seedling establishment due to competition with mature plants. Bareground has increased and pedestalling of grasses may be excessive. Soil water, nutrient capture, nutrient cycling and soil organic matter are temporally and spatially redistributed.
Community 3.1
Community Phase
Decadent sagebrush dominates the overstory. Rabbitbrush may be a significant component. Deep-rooted perennial bunchgrasses may be present in trace amounts or absent from the community. Sandberg bluegrass, muttongrass and annual non-native species increase. Bare ground is significant. Utah juniper and/or singleleaf pinyon may be present.
Community 3.2
Community Phase (at risk)
Sandberg’s bluegrass dominates the site; annual non-native species may be present but are not dominant. Rabbitbrush may dominate overstory with trace amounts of sagebrush. Perennial forbs may be a significant component of the plant community.
Pathway a
Community 3.1 to 3.2
Fire reduces low sagebrush to trace amounts and allows for sprouting shrubs such as rabbitbrush to dominate. Excessive fall grazing causing mechanical damage to shrubs, and/or brush treatments with minimal soil disturbance would reduce sagebrush and facilitate sprouting shrubs and Sandberg bluegrass.
Pathway a
Community 3.2 to 3.1
Time and lack of disturbance and/or grazing management that favors the establishment and growth of sagebrush allows the shrub component to recover. The establishment of low sagebrush can take many years.
State 4
Tree State
This state is characterized by a dominance of Utah juniper and/or singleleaf pinyon in the overstory. Low sagebrush and perennial bunchgrasses may still be present, but they are no longer controlling site resources. Soil moisture, soil nutrients and soil organic matter distribution and cycling have been spatially and temporally altered.
Community 4.1
Community Phase
Utah juniper and/or singleleaf pinyon dominates the overstory and site resources. Trees are actively growing with noticeable leader growth. Trace amounts of bunchgrass may be found under tree canopies with trace amounts of Sandberg bluegrass, muttongrass and forbs in the interspaces. Sagebrush is stressed and dying. Annual non-native species are present under tree canopies. Bare ground interspaces are large and connected.
Community 4.2
Community Phase
Utah juniper and/or singleleaf pinyon dominate overstory. Low sagebrush is decadent and dying with numerous skeletons present or sagebrush may be missing from the system. Bunchgrasses present in trace amounts and annual non-native species may dominate understory. Herbaceous species may be located primarily under the canopy or near the drip line of trees. Bare ground interspaces are large and connected. Soil movement may be apparent.
Pathway a
Community 4.1 to 4.2
Time and lack of disturbance or management action allows for tree cover and density to further increase and trees to out-compete the herbaceous understory species for sunlight and water.
State 5
Eroded State
Abiotic factors including soil redistribution and erosion, soil temperature, soil crusting and sealing, and plant pedestalling are primary drivers of ecological function within this state. Soil moisture, soil nutrients and soil organic matter distribution and cycling are severely altered due to degraded soil surface conditions. Utah juniper and singleleaf pinyon or low sagebrush dominates the overstory and herbaceous species may be present in trace amounts particularly under tree or shrub canopies. Rabbitbrush may be a significant component. Regeneration of trees, shrubs or herbaceous species is not evident.
Community 5.1
Community Phase
Utah juniper and singleleaf pinyon or low sagebrush dominates the overstory and herbaceous species may be present in trace amounts particularly under tree or shrub canopies. Dead sagebrush skeletons are prominent. Pedestalled plants significant. Regeneration of trees, shrubs or herbaceous species is not evident. Annual non-native species present primarily under tree canopies.
Community 5.2
Community Phase
This phase is characterized by a significant loss of soil from this site. Erosion/soil redistribution is apparent; gullying, rills, sheet erosion and water flow paths are extreme.
Pathway a
Community 5.1 to 5.2
Time and lack of management; excessive livestock use.
Transition A
State 1 to 2
Trigger: This transition is caused by the introduction of non-native annual plants, such as cheatgrass, mustards, and bur buttercup. Slow variables: Over time the annual non-native species will increase within the community. Threshold: Any amount of introduced non-native species causes an immediate decrease in the resilience of the site. Annual non-native species cannot be easily removed from the system and have the potential to significantly alter disturbance regimes from their historic range of variation.
Transition A
State 2 to 3
Trigger: To Community Phase 3.1: Inappropriate grazing will decrease or eliminate deep rooted perennial bunchgrasses, increase Sandberg bluegrass and favor shrub growth and establishment. To Community Phase 3.2: Severe fire in community phase 2.3 will remove sagebrush overstory, decrease perennial bunchgrasses and enhance Sandberg bluegrass. Slow variables: Long term decrease in deep-rooted perennial grass density. Threshold: Loss of deep-rooted perennial bunchgrasses changes nutrient cycling, nutrient redistribution, and reduces soil organic matter.
Transition B
State 2 to 4
Trigger: Time and lack of disturbance or management action allows for Utah juniper and/or singleleaf pinyon to dominate. This may be coupled with grazing management that favors tree establishment by reducing understory herbaceous competition for site resources Feedbacks and ecological processes: Trees increasingly dominate use of soil water resulting in decreasing herbaceous and shrub production and decreasing organic matter inputs, contributing to reductions in soil water availability to grasses and shrubs and increased soil erodibility. Slow variables: Over time the abundance and size of trees will increase. Threshold: Trees dominate ecological processes and number of shrub skeletons exceed number of live shrubs. Minimal recruitment of new shrub cohorts.
Transition A
State 3 to 4
Trigger: Absence of disturbance over time allows for Utah juniper or singleleaf pinyon dominance. Feedbacks and ecological processes: Trees increasingly dominate use of soil water resulting in decreasing herbaceous and shrub production and decreasing organic matter inputs, contributing to reductions in soil water availability to grasses and shrubs and increased soil erodibility. Slow variables: Long-term increase in juniper and/or singleleaf pinyon density. Threshold: Trees overtop low sagebrush and out-compete shrubs for water and sunlight. Shrub skeletons exceed live shrubs in number. There is minimal recruitment of new shrub cohorts.
Transition B
State 3 to 5
Trigger: Inappropriate grazing management causing a removal of perennial bunchgrasses and a disruption of the soil surface would increase soil erosion. Soil disturbing treatments such as a chaining or other mechanical tree removal treatment. Slow variable: Bare ground interspaces large and connected; water flow paths long and continuous, understory is sparse, pedestalling of plants significant. Threshold: Soil redistribution and erosion is significant and linked to vegetation mortality evidenced by pedestalling and burying of herbaceous species and / or lack of recruitment in the interspaces.
Transition A
State 4 to 5
Trigger: Time and lack of disturbance or management allows for trees to out-compete remaining herbaceous understory; summer convection storm may initiate soil erosion event. Slow variables: Bare ground interspaces large and connected; water flow paths long and continuous; understory sparse. Threshold: Soil redistribution and erosion is significant and linked to vegetation mortality evidenced by pedestalling and burying of herbaceous species and / or lack of recruitment in the interspaces.
Additional community tables
Table 5. Community 1.1 plant community composition
Group | Common name | Symbol | Scientific name | Annual production (lb/acre) | Foliar cover (%) | |
---|---|---|---|---|---|---|
Shrub/Vine
|
||||||
1 | Primary Perennial Shrubs | 120–450 | ||||
fourwing saltbush | ATCA2 | Atriplex canescens | 50–150 | – | ||
rubber rabbitbrush | ERNA10 | Ericameria nauseosa | 25–100 | – | ||
spiny hopsage | GRSP | Grayia spinosa | 25–100 | – | ||
Nevada jointfir | EPNE | Ephedra nevadensis | 10–75 | – | ||
shadscale saltbush | ATCO | Atriplex confertifolia | 10–25 | – | ||
2 | Secondary Perennial Shrubs | 25–125 | ||||
black sagebrush | ARNO4 | Artemisia nova | 5–25 | – | ||
yellow rabbitbrush | CHVI8 | Chrysothamnus viscidiflorus | 5–25 | – | ||
greasewood | SAVE4 | Sarcobatus vermiculatus | 5–25 | – | ||
horsebrush | TETRA3 | Tetradymia | 5–25 | – | ||
Grass/Grasslike
|
||||||
3 | Primary Perennial Grasses | 36–100 | ||||
Indian ricegrass | ACHY | Achnatherum hymenoides | 25–50 | – | ||
squirreltail | ELEL5 | Elymus elymoides | 10–25 | – | ||
James' galleta | PLJA | Pleuraphis jamesii | 1–25 | – | ||
4 | Secondary Perennial Grasses | 10–40 | ||||
threeawn | ARIST | Aristida | 3–15 | – | ||
King's eyelashgrass | BLKI | Blepharidachne kingii | 3–15 | – | ||
needle and thread | HECO26 | Hesperostipa comata | 3–15 | – | ||
sand dropseed | SPCR | Sporobolus cryptandrus | 3–15 | – | ||
Forb
|
||||||
5 | Primary Perennial Forbs | 10–25 | ||||
globemallow | SPHAE | Sphaeralcea | 10–25 | – | ||
6 | Secondary Perennial Forbs | 10–40 | ||||
princesplume | STANL | Stanleya | 3–15 | – | ||
7 | Annual Forbs | 1–25 |
Interpretations
Animal community
Livestock Interpretations:
This site has limited value for livestock grazing, due to the low forage production. Grazing management should be keyed to dominant grasses or palatable shrubs production.
Fourwing saltbush is one of the most palatable shrubs in the West. Its protein, fat, and carbohydrate levels are comparable to alfalfa. It provides nutritious forage for all classes of livestock. Palatability is rated as good for domestic sheep and domestic goats; fair for cattle; fair to good for horses in winter, poor for horses in other seasons. Spiny hopsage provides a palatable and nutritious food source for livestock, particularly during late winter through spring. Domestic sheep browse the succulent new growth of spiny hopsage in late winter and early spring. In general, livestock forage only lightly on rubber rabbitbrush during the summer, but winter use can be heavy in some locations. Fall use is variable, but flowers are often used by livestock. A few leaves and the more tender stems may also be used. Nevada ephedra is important winter range browse for domestic cattle, sheep and goats. Shadscale is a valuable browse species, providing a source of palatable, nutritious forage for a wide variety of livestock. Shadscale provides good browse for domestic sheep. Shadscale leaves and seeds are an important component of domestic sheep and cattle winter diets. Indian ricegrass is highly palatable to all classes of livestock in both green and cured condition. It supplies a source of green feed before most other native grasses have produced much new growth. Bottlebrush squirreltail is very palatable winter forage for domestic sheep of Intermountain ranges. Domestic sheep relish the green foliage. Overall, bottlebrush squirreltail is considered moderately palatable to livestock. When actively growing, galleta provides good to excellent forage for cattle and horses and fair forage for domestic sheep. Although not preferred, all classes of livestock may use galleta when it is dry. Domestic sheep show greater use in winter than summer months and typically feed upon central portions of galleta tufts, leaving coarser growth around the edges. Galleta may prove somewhat coarse to domestic sheep.
Stocking rates vary over time depending upon season of use, climate variations, site, and previous and current management goals. A safe starting stocking rate is an estimated stocking rate that is fine tuned by the client by adaptive management through the year and from year to year.
Wildlife Interpretations:
Fourwing saltbush provides valuable habitat and year-round browse for wildlife. Fourwing saltbush also provides browse and shelter for small mammals. Additionally, the browse provides a source of water for black-tailed jackrabbits in arid environments. Granivorous birds consume the fruits. Wild ungulates, rodent and lagomorphs readily consume all aboveground portions of the plant. Palatability is rated good for deer, elk, pronghorn and bighorn sheep. Spiny hopsage provides a palatable and nutritious food source for big game animals. Spiny hopsage is used as forage to at least some extent by domestic goats, deer, pronghorn, and rabbits. Wildlife forage only lightly on rubber rabbitbrush during the summer, but winter use can be heavy in some locations. Fall use is variable, but flowers are often used by wildlife. A few leaves and the more tender stems may also be used. The forage value of rubber rabbitbrush varies greatly among subspecies and ecotypes. Mule deer, bighorn sheep, and pronghorn browse Nevada ephedra, especially in spring and late summer when new growth is available. Shadscale is a valuable browse species, providing a source of palatable, nutritious forage for a wide variety of wildlife particularly during spring and summer before the hardening of spiny twigs. It supplies browse, seed, and cover for birds, small mammals, rabbits, deer, and pronghorn antelope. Indian ricegrass is eaten by pronghorn in "moderate" amounts whenever available. In Nevada it is consumed by desert bighorns. A number of heteromyid rodents inhabiting desert rangelands show preference for seed of Indian ricegrass. Indian ricegrass is an important component of jackrabbit diets in spring and summer. In Nevada, Indian ricegrass may even dominate jackrabbit diets during the spring through early summer months. Indian ricegrass seed provides food for many species of birds. Doves, for example, eat large amounts of shattered Indian ricegrass seed lying on the ground. Bottlebrush squirreltail is a dietary component of several wildlife species. Bottlebrush squirreltail may provide forage for mule deer and pronghorn. Desert bighorn sheep of the Mojave Desert utilize galleta as forage. Galleta provides moderately palatable forage when actively growing and relatively unpalatable forage during dormant periods. Galleta provides poor cover for most wildlife species.
Hydrological functions
Runoff is medium. Permeability is moderate.
Recreational uses
Aesthetic value is derived from the diverse floral and faunal composition and the colorful flowering of wild flowers and shrubs during the spring and early summer. This site offers rewarding opportunities to photographers and for nature study. This site is used for hiking and has potential for upland and big game hunting.
Other products
Fourwing saltbush is traditionally important to Native Americans. They ground the seeds for flour. The leaves, placed on coals, impart a salty flavor to corn and other roasted food. Top-growth produces a yellow dye. Young leaves and shoots were used to dye wool and other materials. The roots and flowers were ground to soothe insect bites. Some Native American peoples traditionally ground parched seeds of spiny hopsage to make pinole flour. Native Americans used Nevada ephedra as a tea to treat stomach and kidney ailments. Seeds of shadscale were used by Native Americans for bread and mush. Indian ricegrass was traditionally eaten by some Native Americans. The Paiutes used seed as a reserve food source.
Other information
Fourwing saltbush is widely used in rangeland and riparian improvement and reclamation projects, including burned area recovery. It is probably the most widely used shrub for restoration of winter ranges and mined land reclamation. Spiny hopsage has moderate potential for erosion control and low to high potential for long-term revegetation projects. It can improve forage, control wind erosion, and increase soil stability on gentle to moderate slopes. Spiny hopsage is suitable for highway plantings on dry sites in Nevada. Nevada ephedra is useful for erosion control, and seedlings have been successfully planted onto reclaimed strip mines, with survival ranging from 12 to 94%. Atrazine may be effective in controlling Nevada ephedra, though some plants can survive through crown sprouting. Irrigation may increase control by atrazine. Bottlebrush squirreltail is tolerant of disturbance and is a suitable species for revegetation.
Supporting information
Other references
Houghton, J.G., C.M. Sakamoto, and R.O. Gifford. 1975. Nevada’s Weather and Climate, Special Publication 2. Nevada Bureau of Mines and Geology, Mackay School of Mines, University of Nevada, Reno, NV.
National Oceanic and Atmospheric Administration. 2004. The North American Monsoon. Reports to the Nation. National Weather Service, Climate Prediction Center. Available online: http://www.weather.gov/
Contributors
RL
Approval
Kendra Moseley, 6/12/2025
Rangeland health reference sheet
Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.
Author(s)/participant(s) | |
---|---|
Contact for lead author | |
Date | 06/13/2025 |
Approved by | Kendra Moseley |
Approval date | |
Composition (Indicators 10 and 12) based on | Annual Production |
Indicators
-
Number and extent of rills:
-
Presence of water flow patterns:
-
Number and height of erosional pedestals or terracettes:
-
Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
-
Number of gullies and erosion associated with gullies:
-
Extent of wind scoured, blowouts and/or depositional areas:
-
Amount of litter movement (describe size and distance expected to travel):
-
Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
-
Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
-
Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
-
Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
-
Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):
Dominant:
Sub-dominant:
Other:
Additional:
-
Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
-
Average percent litter cover (%) and depth ( in):
-
Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
-
Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
-
Perennial plant reproductive capability:
Print Options
Sections
Font
Other
The Ecosystem Dynamics Interpretive Tool is an information system framework developed by the USDA-ARS Jornada Experimental Range, USDA Natural Resources Conservation Service, and New Mexico State University.
Click on box and path labels to scroll to the respective text.